Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.06.2017.0126

Characterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species  

Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Park, Dami (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Kim, Kihyun (Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Lim, Seong Mi (Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Yu, Nan Hee (Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Kim, Sosoo (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Kim, Hwang-Yong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Jung, Kyu Seok (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Jang, Ja Yeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Park, Jong-Chul (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration (RDA))
Ham, Hyeonheui (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Lee, Soohyung (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Hong, Sung Kee (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
Kim, Jin-Cheol (Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.33, no.5, 2017 , pp. 499-507 More about this Journal
Abstract
In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of $31.3{\mu}g/ml$ and 100% at a concentration of $250{\mu}g/ml$. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.
Keywords
antifungal activity; Bacillus amyloliquefaciens; iturin A; mycotoxin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kulpers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440.   DOI
2 Song, B., Rong, Y.-J., Zhao, M.-X. and Chi, Z.-M. 2013. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Appl. Microbiol. Biotechnol. 97:7141-7150.   DOI
3 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.   DOI
4 Wachowska, U., Kucharska, K., Jedryczka, M. and Lobik, N. 2013. Microorganisms as biological control agents against Fusarium pathogens in winter wheat. Pol. J. Environ. Stud. 22:591-597.
5 Wang, J., Liu, J., Chen, H. and Yao, J. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76:889-894.   DOI
6 Witt, M. F., Hart, L. P. and Pestka, J. J. 1985. Purification of deoxynivalenol (vomitoxin) by water-saturated silica gel chromatography. J. Agric. Food Chem. 33:745-748.   DOI
7 Xu, H.-M., Rong, Y.-J., Zhao, M.-X., Song, B. and Chi, Z.-M. 2014. Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl. Microbiol. Biotechnol. 98:127-136.   DOI
8 Xue, A. G., Chen, Y., Voldeng, H. D., Fedak, G., Savard, M. E., Langle, T., Zhang, J. and Harman, G. E. 2014. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biol. Control 73:2-7.   DOI
9 Shioma, M. and Shibamoto, T. 1990. Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method. J. Agric. Food Chem. 38:802-804.   DOI
10 Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187.   DOI
11 Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34:955-963.   DOI
12 Zerlouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., de Vicente, A. and Perez-Garcia, A. 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of Cucurbits. Mol. Plant-Microbe Interact. 24:1540-1552.   DOI
13 Zhang, X., Li, B., Wang, Y., Guo, Q., Lu, X., Li, S. and Ma, P. 2013. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 97:9525-9534.   DOI
14 Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E. and Liu, Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One 9:e92486.   DOI
15 Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics, and biology. The American Phytopathological Society, St. Paul, Minnesota, USA. 260 pp.
16 Arrebola, E., Jacobs, R. and Korsten, L. 2009. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108:386-395.
17 Cavaglieri, L., Orlando, J., Rodriguez, M. I., Chulze, S. and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res. Microbiol. 156:748-754.   DOI
18 Cole, L. and Blum, M. S. 1975. Antifungal properties of the insect alarm pheromones, citral, 2-heptanone, and 4-methyl-3-heptanone. Mycologia 67:701-708.   DOI
19 Crane, J. M., Gibson, D. M., Vaughan, R. H. and Bergstrom, G. C. 2013. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathology 103:146-155.   DOI
20 Dantigny, P., Bensoussan, M., Vasseur, V., Lebrihi, A., Buchet, C., Ismaili-Alaoui, M., Devlieghere, F. and Roussos, S. 2006. Standardisation of methods for assessing mould germination: a workshop report. Int. J. Food Microbiol. 108:286-291.   DOI
21 Dey, G., Bharti, R., Dhanarajan, G., Das, S., Dey, K. K., Prashanth Kumar, B. N., Sen, R. and Mandal, M. 2015. Marine lipopeptide iturin A inhibits Akt mediated $GSK_3{\beta}$ and $FoxO_3a$ signaling and triggers apoptosis in breast cancer. Sci. Rep. 5:10316.   DOI
22 Eden, P. A., Schimidt, T. M., Blakemore, R. P. and Pace, N. R. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16s rRNA-specific DNA. Int. J. Syst. Evol. Microbiol. 41:324-325.
23 Gong, A.-D., Li, H.-P., Yuan, Q.-S., Song, X. S., Yao, W., He, W.-J., Zhang, J.-B. and Liao, Y.-C. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871.   DOI
24 Jard, G., Liboz, T., Mathieu, F., Guyonvarc'h, A. and Lebrihi, A. 2011. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 28:1590-1609.   DOI
25 Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V. and Vannacci, G. 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98-106.   DOI
26 Joo, H. J., Kim, H.-Y., Kim, L.-H, Lee, S., Ryu, J.-G. and Lee, T. 2015. A Brevibacillus sp. antagonistic to mycotoxigenic Fusarium spp. Biol. Control 87:64-70.   DOI
27 Jung, B., Park, S.-Y., Lee, Y.-W. and Lee, J. 2013. Biological efficacy of Streptomyces sp. Strain BN1 against the cereal head blight pathogen Fusarium graminearum. Plant Pathol. J. 29:52-58.   DOI
28 Kong, H. G., Kim, J.-C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J. and Lee, S.-W. 2010. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J. 26:170-177.   DOI
29 Matic, S., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2014. Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biol. Control 73:59-67.   DOI
30 Munimbazi, C. and Bullerman, L. B. 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbiol. 84:959-968.   DOI
31 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.   DOI
32 Pagnussatt, F. A., Del Ponte, E. M., Garda-Buffon, J. and Badiale-Furlong, E. 2014. Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pest. Biochem. Physiol. 108:21-26.   DOI