Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.04.2015.0061

Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species  

Johnson, Eric T. (Crop Bioprotection Research Unit, USDA Agricultural Research Service)
Evans, Kervin O. (Renewable Product Technology Research Unit, USDA Agricultural Research Service)
Dowd, Patrick F. (Crop Bioprotection Research Unit, USDA Agricultural Research Service)
Publication Information
The Plant Pathology Journal / v.31, no.3, 2015 , pp. 316-321 More about this Journal
Abstract
A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of $50{\mu}g/ml$, although one isolate of Fusarium oxysporum was inhibited at $5{\mu}g/ml$ of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with $50{\mu}g/ml$ of JH8944. Germinating F. graminearum conidia required $238{\mu}g/ml$ of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of $250{\mu}g/ml$ even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and $50{\mu}g/ml$ of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.
Keywords
antifungal peptide; membrane-active mechanism; non-phytotoxic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdallah, N. A., Shah, D., Abbas, D. and Madkour, M. 2010. Stable integration and expression of a plant defensin in tomato confers resistance to Fusarium wilt. GM Crops 1:344-350.   DOI   ScienceOn
2 Brown, R., Hazen, E. L. and Mason, A. 1953. Effect of fungicidin (nystatin) in mice injected with lethal mixtures of aureomycin and Candida albicans. Science 117:609-610.   DOI
3 Dowd, P. F., Johnson, E. T. and Pinkerton, T. S. 2007. Oral toxicity of $\beta$-N-acetyl hexosaminidase to insects. J. Agric. Food Chem. 55:3421-3428.   DOI   ScienceOn
4 Dowd, P. F., Johnson, E. T. and Price, N. P. 2012. Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome-inactivating proteins and agglutinin. J. Agric. Food Chem. 60:10768-10775.   DOI   ScienceOn
5 Duncan, V. M. S. and O'Neil, D. A. 2013. Commercialization of antifungal peptides. Fungal Biol. Rev. 26:156-165.   DOI   ScienceOn
6 Errakhi, R., Meimoun, P., Lehner, A., Vidal, G., Briand, J., Corbineau, F., Rona, J. P. and Bouteau, F. 2008. Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. J. Exp. Bot. 59:3121-3129.   DOI   ScienceOn
7 Evans, K. O. 2006. Room-temperature ionic liquid cations act as short-chain surfactants and disintegrate a phospholipid bilayer. Colloids and Surfaces A: Physiochem. Engineer. Aspects 274:11-17.   DOI
8 Ghag, S. B., Shekhawat, U. K. and Ganapathi, T. R. 2012. Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS ONE 7:e39557.   DOI
9 Koch, A., Khalifa, W., Landen, G., Vilcinskas, A., Kogel, K. H., and Imani, J. 2012. The antimicrobial peptide thanatin reduces fungal infections in Arabidopsis. J. Phytopathol. 160:606-610.   DOI   ScienceOn
10 Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C. and Dilbaghi, N. 2014. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 101:1061-1067.   DOI   ScienceOn
11 Lee, J. and Lee, D. G. 2009. Antifungal properties of the peptide derived from the signal peptide of the HIV-1 regulatory protein. Rev. FEBS Lett. 583:1544-1547.   DOI   ScienceOn
12 Makihira, S., Nikawa, H., Shuto, T., Nishimura, M., Mine, Y., Tsuji, K., Okamoto, K., Sakai, Y., Sakai, M., Imari, N., Iwata, S., Takeda, M. and Suehiro, F. 2011. Evaluation of trabecular bone formation in a canine model surrounding a dental implant fixture immobilized with an antimicrobial peptide derived from histatin. J. Mater. Sci. Mater. Med. 22:2765-2772.   DOI   ScienceOn
13 Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Professional, Ames, Iowa, USA. 388 pp.
14 Li, Q., Lawrence, C. B., Xing, H. Y., Babbitt, R. A., Bass, W. T., Maiti, I. B. and Everett, N. P. 2001. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635-639.   DOI
15 Long, S., Wendt, D. J., Bell, S. M., Taylor, T. W., Dewavrin, J. Y. and Vellard, M. C. 2012. A novel method for the large-scale production of PG-CNP37, a C-type natriuretic peptide analogue. J. Biotechnol. 164:196-201.
16 Matsuzaki, K., Yoneyama, S. and Miyajima, K. 1997. Pore formation and translocation of melittin. Biophys. J. 73:831-838.   DOI   ScienceOn
17 Nikawa, H., Fukushima, H., Makihira, S., Hamada, T. and Samaranayake, L. P. 2004. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis. 10:221-248.   DOI   ScienceOn
18 Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. and Papahadjopoulos, D. 1979. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. BBA - Biomembranes 557:9-23.   DOI   ScienceOn
19 Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W. and Misra, S. 2000. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat. Biotechnol. 18:1162-1166.   DOI   ScienceOn
20 Parente, R. A. and Lentz, B. R. 1986. Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing. Biochemistry 25:6678-6688.   DOI   ScienceOn
21 Regente, M. C., Giudici, A. M., Villalaín, J. and De la Canal, L. 2005. The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett. Appl. Microbiol. 40:183-189.   DOI   ScienceOn
22 Schmale, D. G. and Munkvold, G. P. 2014. Economic impact of mycotoxins. http://www.apsnet.org/edcenter/intropp/topics/Mycotoxins/Pages/EconomicImpact.aspx (accessed December, 2014).
23 Vasquez, L. E., Guzmán, F., Patarroyo, M. E. and Arango, R. 2009. In vitro evaluation of antimicrobial peptides against Mycosphaerella fijiensis Morelet and their interaction with some chemical fungicides. Rev. Fac. Nal. Agr. Medellín 62:5063-5069.
24 Wang, X. J., Wang, X. M., Teng, D., Zhang, Y., Mao, R. Y. and Wang, J. H. 2014. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett. Appl. Microbiol. 59:71-78.   DOI   ScienceOn
25 Wicklow, D. T. and Poling, S. M. 2009. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathology 99:109-115.   DOI   ScienceOn
26 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415:389-395.   DOI   ScienceOn
27 Zeitler, B., Herrera Diaz, A., Dangel, A., Thellmann, M., Meyer, H., Sattler, M. and Lindermayr, C. 2013. De-novo design of antimicrobial peptides for plant protection. PLoS ONE 8:e71687.   DOI