Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.10.2014.0113

Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactinexcreting Strains of Bacillus subtilis  

Jia, Ke (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Gao, Yu-Han (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Huang, Xiao-Qin (Institute of Plant Protection, Sichuan Academy of Agricultural Sciences)
Guo, Rong-Jun (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Li, Shi-Dong (Key Laboratory of Pest Management in Crops of the Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Publication Information
The Plant Pathology Journal / v.31, no.2, 2015 , pp. 140-151 More about this Journal
Abstract
Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of $0.96log_{10}ng/g$ to $2.39log_{10}ng/g$ was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of $2.91log_{10}ng/g$ to $3.36log_{10}ng/g$ at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field.
Keywords
colonization; Fusarium oxysporum f. sp. cucumerinum; real-time PCR; surfactin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yang, Q. Y., Jia, K., Geng, W. Y., Guo, R. J. and Li, S. D. 2014. Management of cucumber wilt disease by Bacillus subtilis B006 through suppression of Fusarium oxysporum f. sp. cucumerinum in rhizosphere. Plant Pathol. J. 13:160-166.   DOI
2 Zhao, X. J. and Wu, D. H. 2001. Studies on techniques of in vitro evaluation of fusaric wilt resistance in cucumber. J. South. Chin. Agric. Univ. 22:41-45.
3 Ann, M. N., Cho, Y. E., Ryu, H. J., Kim, H. T. and Park, K. S. 2013. Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1. Kor. J. Pesti. Sci. 17:388-393.   DOI   ScienceOn
4 Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
5 Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319.   DOI   ScienceOn
6 Bargabus, R. L., Zidack, N. K., Sherwood, J. W. and Jacobsen, B. J. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 61:289-298.   DOI   ScienceOn
7 Burgess, L. W., Knight, T. E., Tesoriero, L. and Phan, H. T. 2008. Diagnostic manual for plant diseases in Vietnam. ACIAR:Canberra 92-94 pp.
8 Cao, Y., Zhang, Z. H., Ling, N., Yuan, Y. J., Zheng, X. Y., Shen, B. and Shen, Q. R. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47:495-506.   DOI
9 Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H. and Shin, K. S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223:47-51.   DOI   ScienceOn
10 Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J. and Ongena, M. 2014. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant-Microbe Interact. 27:87-100.   DOI   ScienceOn
11 Copping, L. G. 2004. The manual of biocontrol agents. Third edition of the biopesticide manual. BCPC (British Crop Protection Council), UK.
12 Fan, B., Chen, X. H., Budiharjo, A., Bleiss, W.,Vater, J. and Borriss, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151:303-311.   DOI   ScienceOn
13 Farag, M. A., Ryu, C. M., Sumner, L. W. and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262-2268.   DOI   ScienceOn
14 Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-359.   DOI   ScienceOn
15 Geng, W. Y., Guo, R. J., Li, S. D. and Xu, X. H. 2011. Identification of the SCAR markers for detection of biocontrol Bacillus strains B006 and BH1 in soil. Chin. J. Biol. Control 27:233-240.
16 Guo, R. J., Li, S. D., Zhang, J., Zhang, X., Mu, G. Y. and Wang, Z. Y. 2010. Characterization of Bacillus strains screened via nutritional competition for biocontrol of soybean root rot disease. Acta Phytopathol. Sin. 40:307-314.
17 Jenkins S. F. Jr. and Wehner T. C. 1983. Occurrence of Fusarium oxysporum f. sp. cucumerinum on greenhouse-grown Cucumis sativus seed stocks in North Carolina. Plant Dis. 67:1024-1025.   DOI
18 Hao, B. Q., Ma, L. P. and Qiao, X. W. 2010. Colonization ability of plant growth promoting Bacillus B96-II-gfp labeled with GFP. Chin. J. Eco-Agric. 8:861-865.
19 Henry, G., Deleu, M., Jourdan, E., Thonart, P. and Ongena, M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13:1824-1837.   DOI   ScienceOn
20 Heydari, A. and Pessarakli, M. 2010. A review on biological control of fungal plant pathogens using microbial antagonistits. J. Biol. Sci. 10:273-290.   DOI
21 Jia, K., Guo, R. J. and Li, S. D. 2013. Characteristics of surfactin mutants of Bacillus subtilis B006 and their suppressing ability against cucumber Fusarium wilt. Chin. J. Biol. Control 29:538-546.
22 Jiang, H., Cao, S., Wang, L. J., Wu, X. H. and Yang, L. Y. 2012. Research progress on cucumber Fusarium wilt and its integrated control. Chin. Plant Prot. 32:13-17.
23 Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P. and Ongena, M. 2009. Insights into the defenserelated events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe Interact. 22:456-468.   DOI   ScienceOn
24 Jung, J., Yu, K. O., Ramzi, A. B., Choe, S. H., Kim, S. W. and Han, S. O. 2012. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnol. Bioeng. 109:2349-2356.   DOI   ScienceOn
25 Kinsella, K., Schulthess, C. P., Morris, T. F. and Stuart, J. D. 2009. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem. 41:374-379.   DOI   ScienceOn
26 Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant-Microbe Interact. 19:250-256.   DOI   ScienceOn
27 Keel, C., Voisard, C., Berling, C. H., Kahir, G. and Defago, G. 1989. Iron sufficiency is a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584-589.   DOI
28 Kilian, M., Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G. and Hain, R. 2000. $FZB24^{(R)}$ Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Naehrichten Bayer 53:72-93.
29 Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.   DOI   ScienceOn
30 Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584.   DOI   ScienceOn
31 Li, B. Q., Lu, X. Y., Guo, Q. G., Qian, C. D., Li, S. Z. and Ma, P. 2010. Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1. Sci. Agric. Sin. 43:3547-3554.
32 Liu, J., Zhou, T., He, D., Li, X. Z., Wu, H. J., Liu, W. Z. and Gao, X. W. 2011. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J. Mol. Microbiol. Biotechnol. 20:43-52.   DOI   ScienceOn
33 Li, D. Q., Chen, Z. Y., Liu, Y. F. and Liu,Y. Z. 2006. Screening of mutation high-yielding biocontrol bacterium Bs-916 by ion implantation and the effect of inhibiting pathogens and control disease. Acta Phytophyl. Sin. 33:141-144.
34 Li, D. Q., Nie, F. Y., Wei, L. H., Wei, B. Q. and Chen, Z. Y. 2007. Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation. Appl. Microbiol. Biot. 75:1401-1408.   DOI
35 Li, L., Yang, J. B., Li, J., Wu, L. J., Wu, J. D., Yu, Z. L. and Luo, N. J. 1994. Research on damage of ion beam irradiated pUC18 plasmid DNA. J. Anhui Agric. Sci. 22:300-303.
36 Lievens, B., Claes, L., Vakalounakis, D. J., Vanachter, A. C. and Thomma, B. P. 2007. A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environ. Microbiol. 9:2145-2161.   DOI   ScienceOn
37 Martinez, R., Aguilar, M. I., Guirado, M. L., Alvarez, A. and Gomez, J. 2003. First report of fusarium wilt of cucumber caused by Fusarium oxysporum in Spain. Plant Pathol. 6:410pp.
38 Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P. and Ongena, M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 29:176-191.
39 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.   DOI   ScienceOn
40 Owen, J. H. 1955. Fusarium wilt of cucumber. Phytopathology 45:435-439.
41 Owen, J. H. 1959. Fusarium wilt of cucumber. Circular 194 (University of Florida, Agricultural extension service). http://ufdc.ufl.edu/UF00084448/00001/1j.
42 Park, K. S., Kloepper, J. W. and Ryu, C. M. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18:1095-1100.
43 Park, S. Y., Choi, S. K., Kim, J., Oh, T. K. and Park, S. H. 2012. Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene. Appl. Environ. Microbiol. 78:4194-4199.   DOI
44 Raaijmakers, J. M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037-1062.   DOI
45 Robertson, J. B., Gocht, M., Marahiel, M. A. and Zuber, P. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86:8457-8461.   DOI
46 Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440.   DOI   ScienceOn
47 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2003. Bacterial volatiles induce systemic resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932.   DOI   ScienceOn
48 Thomashow, L. S. and Weller, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannonas graminis var. tritici. J. Bacteriol. 170:3499-3508.   DOI
49 Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14:9803-9819.   DOI   ScienceOn
50 Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857.   DOI   ScienceOn
51 Vakalounakis, D. J. 1996. Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov.. Plant Dis. 80:313-316.   DOI
52 Vakalounakis, D. J., Wang, Z., Frakiadakis, G. A., Skaracis, G. N. and Li, D. B. 2004. Characterization of Fusarium oxysporum isolates obtained from cucumber (Cucumis sativus) in China by pathogenicity, VCGs and RAPD. Plant Dis. 88:645-649.   DOI   ScienceOn
53 Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483.   DOI   ScienceOn
54 Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q. and Zhang, R. 2013. Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79:808-815.   DOI
55 Yang, Q. Y., Guo, R. J., Li, S. D. and Xu, X. H. 2012. Antifungal activities and principal component analysis of Bacillus subtilis B006 against Fusarium oxysporum f. sp. cucumerinum and Phytophthora capsici. Chin. J. Biol. Control 8:235-242.