Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2014.0075

Evidence for Genetic Similarity of Vegetative Compatibility Groupings in Sclerotinia homoeocarpa  

Chang, Seog Won (Turfgrass Science Institute, Hanul Inc.)
Jo, Young-Ki (Department of Plant Pathology and Microbiology, Texas A&M University)
Chang, Taehyun (Department of Plant Resources and Environment, College of Ecology and Environmental Science, Kyungpook National University)
Jung, Geunhwa (Stockbridge School of Agriculture, University of Massachusetts)
Publication Information
The Plant Pathology Journal / v.30, no.4, 2014 , pp. 384-396 More about this Journal
Abstract
Vegetative compatibility groups (VCGs) are determined for many fungi to test for the ability of fungal isolates to undergo heterokaryon formation. In several fungal plant pathogens, isolates belonging to a VCG have been shown to share significantly higher genetic similarity than those of different VCGs. In this study we sought to examine the relationship between VCG and genetic similarity of an important cool season turfgrass pathogen, Sclerotinia homoeocarpa. Twenty-two S. homoeocarpa isolates from the Midwest and Eastern US, which were previously characterized in several studies, were all evaluated for VCG using an improved nit mutant assay. These isolates were also genotyped using 19 microsatellites developed from partial genome sequence of S. homoeocarpa. Additionally, partial sequences of mitochondrial genes cytochrome oxidase II and mitochondrial small subunit (mtSSU) rRNA, and the atp6-rns intergenic spacer, were generated for isolates from each nit mutant VCG to determine if mitochondrial haplotypes differed among VCGs. Of the 22 isolates screened, 15 were amenable to the nit mutant VCG assay and were grouped into six VCGs. The 19 microsatellites gave 57 alleles for this set. Unweighted pair group methods with arithmetic mean (UPGMA) tree of binary microsatellite data were used to produce a dendrogram of the isolate genotypes based on microsatellite alleles, which showed high genetic similarity of nit mutant VCGs. Analysis of molecular variance of microsatellite data demonstrates that the current nit mutant VCGs explain the microsatellite genotypic variation among isolates better than the previous nit mutant VCGs or the conventionally determined VCGs. Mitochondrial sequences were identical among all isolates, suggesting that this marker type may not be informative for US populations of S. homoeocarpa.
Keywords
nit mutants; Sclerotinia homoeocarpa; microsatellites; VCG;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Berbegal, M., Ortega, A., Jimenez-Gasco, M. M., Olivares-Garcia, C., Jimenez-Diaz, R. M. and Armengol, J. 2010. Genetic diversity and host range of Verticillium dahliae isolates from artichoke and other vegetable crops in Spain. Phytopathology 94:396-404.
2 Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.   DOI   ScienceOn
3 Baldwin, N. A. and Newell, A. J. 1992. Field production of fertile apothecia by Sclerotinia homoeocarpa in Festuca turf. J. Sports Turf Res. Inst. 68:73-76.
4 Bennett, F. T. 1937. Dollar spot disease on turf and its causal organism Sclerotinia homoeocarpa n. sp. Ann. Appl. Biol. 24:236-257.   DOI
5 Brooker, N. L., Leslie, J. F. and Dickman, M. B. 1991. Nitrate nonutilizing mutants of Colletotrichum and their use in studies of vegetative compatibility and genetic relatedness. Phytopathology 81:672-677.   DOI
6 Burpee, L. L. 1997. Control of dollar spot of creeping bentgrass caused by an isolate of Sclerotinia homoeocarpa resistant to benzimidazole and demethylation-inhibitor fungicides. Plant Dis. 81:1259-1263.   DOI   ScienceOn
7 Cai, G. and Schneider, R. W. 2008. Population structure of Cercospora kikuchii, the causal agent of Cercospora leaf blight and purple seed stain in soybean. Phytopathology 98:823-829.   DOI   ScienceOn
8 Cecilia De Lima Favaro, L., Luiz Araujo, W., Aparecida De Souza-Paccola, E., Lucio Azevedo, J. and Paccola-Meirelles, L. D. 2007. Colletotrichum sublineolum genetic instability assessed by mutants resistant to chlorate. Mycol. Res. 111:93-105.   DOI   ScienceOn
9 Chakraborty, N., Chang, T., Casler, M. D. and Jung, G. 2006. Response of bentgrass cultivars to Sclerotinia homoeocarpa isolates representing 10 vegetative compatibility groups. Crop Sci. 46:1237-1244.   DOI   ScienceOn
10 Correll, J. C., Klittich, C. J. R. and Leslie, F. F. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77:1640-1646.   DOI
11 Chang, S. W., Chang, T. H., Hong, J. K., Park, J. H. and Jung, S. W. 2011. Vegetative compatibility grouping of Sclerotinia homoeocarpa isolates infecting turfgrass in South Korea. Asian J. Turfgrass Sci. 25:171-176.
12 Chang, S. W., Jung, S. W., Kim, S., Park, J. H. and Lee, J. Y. 2012. Synergistic interaction of fungicides in mixtures under different conditions of dollar spot disease caused by Sclerotinia homoeocarpa. Asian J. Turfgrass Sci. 26:96-101. (in Korean).   과학기술학회마을
13 Chang, S. W., Jung, S. W., Kim, S., Park, J. H. and Lee, J. Y. 2013. Control effect on dollar spot disease caused by Sclerotinia homoeocarpa under different application rates and intervals with two mixed fungicides. Weed & Turf. Sci. 2:408-412. (in Korean).   과학기술학회마을   DOI   ScienceOn
14 Correll, J. C., Gordon, T. R. and McCain, A. H. 1988. Vegetative compatibility and pathogenicity of Verticillium albo-atrum. Phytopathology 78:1017-1021.   DOI
15 Cove, D. J. 1976. Chlorate toxicity in Aspergillus nidulansselection and characterization of chlorate resistant mutants. Heredity 36:191-203.   DOI   ScienceOn
16 DeVries, R. E., Trigiano, R. N., Windham, M. T., Windham, A. S., Sorochan, J. C., Rinehart, T. A. and Vargas, J. M. 2008. Genetic analysis of fungicide-resistant Sclerotinia homoeocarpa isolates from Tennessee and Northern Mississippi. Plant Dis. 92:83-90.   DOI   ScienceOn
17 Felsentein, N. J. 1989. PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164-166.
18 Glass, N. L., Rasmussen, C., Roca, M. G. and Read, N. D. 2004. Hyphal homing, fusion and mycelial interconnectedness. TRENDS in Microbiol. 12:135-141.   DOI   ScienceOn
19 Ghikas, D. V., Kouvelis, V. N. and Typas, M. A. 2010. Phylogenetic and biogeographic Implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol. 10:1-15.   DOI   ScienceOn
20 Grubisha, L. C. and Cotty, P. J. 2009. Twenty-four microsatellite markers for the aflatoxin-producing fungus Aspergillus flavus. Mol. Ecol. Res. 9:264-267.   DOI   ScienceOn
21 Glass, N. L., Jacobson, D. J. and Shiu, P. K. T. 2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous Ascomycete fungi. Annu. Rev. Genet. 34:165-186.   DOI   ScienceOn
22 Jackson, N. 1973. Apothecial production in Sclerotinia homoeocarpa F. T. Bennett. J. Sports Turf Res. Inst. 49:58-63.
23 Joaquim, T. R. and Rowe, R. C. 1991. Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 81:552-558.   DOI
24 Jo, Y. K., Chang, S. W., Rees, J. and Jung, G. 2008. Reassessment of vegetative compatibility of Sclerotinia homoeocarpa using nitrate-nonutilizing mutants. Phytopathology 98:108-114.   DOI   ScienceOn
25 Katan, T. and Katan, J. 1988. Vegetative compatibility grouping of Fusarium oxysporum f. sp. vasinfectum from tissue and rhizosphere of cotton plants. Phytopathology 78:852-855.   DOI
26 Klittich, C. J. R. and Leslie, J. F. 1988. Nitrate reduction mutants of Fusarium moniliforme (Gibberella fujikuroi). Genetics 118:417-423.
27 Korolev, N. and Katan, T. 1997. Improved medium for selecting nitrate non-utilizing (nit) mutants of Verticillium dahlia. Phytopathology 87:1067-1070.   DOI   ScienceOn
28 Marlatt, M. L., Correll, J. C., Kaufmann, P. and Cooper, P. E. 1996. Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the United States. Plant Dis. 80:1336-1342.   DOI   ScienceOn
29 Lamour, K. H., Finley, L., Hurtado-Gonzalez, O., Gobena, D., Tierney, M. and Meijer, H. J. G. 2006. Targeted gene mutation in Phytophthora sp. Mol. Plant Microbe In. 19:1359-1367.   DOI   ScienceOn
30 Leslie, F. J. 1993. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 31:127-150.   DOI   ScienceOn
31 Ma, Z., Luo, Y. and Michailides, T. J. 2004. Spatiotemporal changes in the population structure of Botryosphaeria dothidea from California pistachio orchards. Phytopathology 94:326-332.   DOI   ScienceOn
32 Marzluf, G. A. 1981. Regulation of nitrogen metabolism and gene expression in fungi. Microbiol. Rev. 45:437-461.
33 Mitkowski, N. A. and Colucci, S. 2006. The identification of a limited number of vegetative compatibility groups within isolates of Sclerotinia homoeocarpa infecting Poa spp. and Agrostis palustris from temperate climates. J. Phytopathology 154:500-503.   DOI   ScienceOn
34 Nitzan, N., Hazanovsky, M., Tal, M. and Tsror (Lahkim), L. 2002. Vegetative compatibility groups in Colletotrichum coccodes, the causal agent of black dot on potato. Phytopathology 92:827-832.   DOI   ScienceOn
35 Peakall, R. and Smouse, P. E. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mole. Ecol. Notes 6:288-295.   DOI   ScienceOn
36 Powell, J. F. and Vargas, J. M. 2001. Vegetative compatibility and seasonal variation among isolates of Sclerotinia homoeocarpa. Plant Dis. 85:377-381.   DOI   ScienceOn
37 Rozen, S. and Skaletsky, H. 2000. Primer 3 on the WWW for general users and biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds Krawetz S, Misener S), pp. 365-386. Humana Press, Totowa, New Jersey.
38 Smith, J. D., Jackson, N. and Woolhouse, A. R. 1989. Fungal diseases of amenity turfgrasses. 3rd. Ed. E. and F. Spon, London.
39 Saitoh, K., Togashi, K., Arie, T. and Teraoka, T. 2006. A simple method for a mini-preparation of fungal DNA. J. Gen. Plant. Pathol. 72: 348-350.   DOI
40 Skovgaard, K., Nirenberg, H. I., O'Donnell, K. and Rosendahl, S. 2001. Evolution of Fusarium oxysporum f. sp. vasinfectum races Inferred from multigene genealogies. Phytopathology 91:1231-1237.   DOI   ScienceOn
41 Smiley, R. W. Dernoeden, P. H. and Clarke B. B. 2005. Compendium of turfgrass diseases. American Phytopathological Society, St. Paul, MN.
42 Subbarao, K. V., Chassot, A., Gordon, T. R., Hubbard, J. C., Bonello, P., Mullin, R., Okamoto, D., Davis, R. M. and Koike, S. T. 1995. Genetic relationships and cross pathogenicities of Verticillium dahliae isolates from cauliflower and other crops. Phytopathology 85:1105-1112.   DOI
43 Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI   ScienceOn
44 Tomsett, A. B. and Garrett, R. H. 1980. The isolation and characterization of mutants defective in nitrate assimilation in Neurospora crassa. Genetics 95:649-660.
45 Viji, G., Uddin, W., O'Neill, N. R., Mischke, S. and Saunders, J. A. 2004. Genetic diversity of Sclerotinia homoeocarpa isolates from turfgrasses from various regions in North America. Plant Dis. 88:1269-1276.   DOI   ScienceOn
46 Cox, K. D., Bryson, P. K. and Schnabel, G. 2007. Instability of propiconazole resistance and fitness in Monilinia fructicola. Phytopathology 97:448-453.   DOI   ScienceOn
47 Warnke, S. 2003. Creeping bentgrass (Agrostis stolonifera L.). Pages 175-185 in: Turfgrass Biology, Genetics, and Breeding. M. D. Casler and R. R. Duncan, eds. John Wiley & Sons, Hoboken, NJ.