Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.05.2013.0054

Genetic Diversity and Differentiation of Colletotrichum spp. Isolates Associated with Leguminosae Using Multigene Loci, RAPD and ISSR  

Mahmodi, Farshid (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia)
Kadir, J.B. (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia)
Puteh, A. (Department of Crop Science, Faculty of Agriculture, University Putra Malaysia)
Pourdad, S.S. (Dry-land Agricultural Research Institute (DARI))
Nasehi, A. (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia)
Soleimani, N. (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia)
Publication Information
The Plant Pathology Journal / v.30, no.1, 2014 , pp. 10-24 More about this Journal
Abstract
Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5-19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.
Keywords
Colletotrichum spp.; genetic diversity; ISSR; multigene loci; RAPD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Williams, J. G. K., kubelik, A. R., Livvak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.   DOI   ScienceOn
2 White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (eds) PCR Protocols: a guide to methods and applications, Academic Press, New York, USA, PP. 315-322.
3 Wolfe, A. D. and Liston, A. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Plant Molecular Systematics II eds. Soltis, D. E., Soltis, P. S. and Doyle, J. J. pp. 43-86. Kluwer.
4 Ratanacherdchai, K., Wang, H. K., Lin, F. C. and Soytong, K. 2007. RAPD analysis of Colletotrichum species causing chilli anthracnose disease in Thailand. J. Agr. Technol. 3:211-219.
5 Ratanacherdchai, K., Wang, H. K., Lin, F. C. and Soytong, K. 2010. ISSR for comparison of cross-inoculation potential of Colletotrichum capsici causing chilli anthracnose. Afri. J. Microbiol. Res. 4:76-83.
6 Rohlf, E. J. 1993. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc., Setauket, New York.
7 Sachse, K. 2004. Specificity and performance of PCR detection assays for microbial pathogens. Mol. Biotechnol. 26:61-79.   DOI   ScienceOn
8 Sherriff, C., Whelan, M. J., Arnold, G. M. and Baily, J. A. 1995. rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycolog. Res. 99:475-478.   DOI   ScienceOn
9 Sambrook, J., Fritsch, E. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edn. New York: Cold Spring Harbor Press.
10 Serraj, R. 2004. Symbiotic nitrogen fixation: challenges and future prospects for application in tropical agrosystems. Oxford and IBH, New Delhi, India.
11 Sherriff, C., Whelan, M. J., Arnold, G. M., Lafay, J. F., Brygoo, Y. and Bailey, J. A. 1994. Ribosomal DNA sequence analysis reveals new species groupings in the genus Colletotrichum. Exp. Mycol. 18:121-138.   DOI   ScienceOn
12 Sutton, B. C. 1992. The Genus Glomerella and its anamorph Colletotrichum, In: Bailey, J. A. and Jeger, M. J. (eds) Colletotrichum: Biology, Pathology, and Control. CAB International, Wallingford, PP. 1-26.
13 Talbot, N. J. 2001. Nucleic acid isolation and analysis, In: Talbot, N. J. (ed) Molecular and Cellular Biology of Filamentous Fungi, Oxford: Oxford University Press, PP. 23-26.
14 Cannon, P. F., Damm, U., Johnston, P. R. and Weir, B. S. 2012. Colletotrichum-current status and future directions. Stud. Mycol. 73:181-213.   DOI   ScienceOn
15 Tamura, K., Peterson, D., Peterson, N., Steker, G., Nei, M. and Kumar, S. 2011. MEGA5; Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.   DOI   ScienceOn
16 Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. and Fisher, M. C. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21-32.   DOI   ScienceOn
17 Than, P. P., Jeewon, R., Hyde, K. D., Pongsupasamit, S., Mongkolporn, O., Taylor, P. W. J. (2008). Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol. 57:562-572.   DOI   ScienceOn
18 Thompson, J. D., Higgins, D. G., Gibson, T. J. 1994. Clustal W; Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.   DOI   ScienceOn
19 Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. and Wheeler, D. L. 2008. GenBank. Nucleic Acids Res. 36: D25-D30.   DOI   ScienceOn
20 Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B., Waller, J., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., Liu, Z. Y., Prihastuti, H., Shivas, R. G., McKenzie, E. H. C. and Johnston, P. R. 2009. A polyphasic approach for studying Colletotrichum. Fungal Divers. 39:183-204.
21 Graham, P.H. and Vance, C.P. 2003. Legumes; Importance and Constraints to greater use. Plant Physiol. 131:872-877.   DOI   ScienceOn
22 Casimiro, S., Moura, M., Ze-Ze, L., Tenreiro, R. and Monteiro, A. A. 2004. Internal transcribed spacer 2 amplicons as a molecular marker for identification of Peronospora parasitica (crucifer downy mildew). J. Appl. Microbiol. 96: 579-587.   DOI   ScienceOn
23 Crouch, J. A., Clarke, B. B., White, J. F. and Hillman, B. I. 2009. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species of the fungus from warm season grasses. Mycologia 101:717-732.   DOI   ScienceOn
24 Damm, U., Woudenberg, J. H. C., Cannon, P. F. and Crous, P. W. 2009. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 39:45-87.
25 Hettwer, U. and Gerowitt, B. 2004. An investigation of genetic variation in Cirsium arvense field patches. Weed Res. 44: 289-297.   DOI   ScienceOn
26 Gupta, S., Srivastava, M., Mishra, G., Naik, P., Chauhan, R., Tiwari, S., Kumar, M. and Singh, R. 2010. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afric. J. Biotechnol. 7:4230-4243.
27 Guthrie, P. A. I., Magill, C. W., Frederiksen, R. A. and Odvody, G. N. 1992. Random amplified polymorphic DNA markers: A system for identifying and differentiating isolates of Colletotrichum. Phytopathology 82:832-835.   DOI
28 Hall, T. A. 1999. BioEdit; a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acids Symposium Series 41:95-98.
29 Hyde, K. D. and Zhang, Y. 2008. Epitypification: should we epitypify? Journal of Zhejiang University, Science B 9:842-846.   DOI   ScienceOn
30 Hyde, K, D., Cai, L., McKenzie, E. H. C., Yang, Y. L. and Zhang, J. Z. 2009b. Colletotrichum: a catalogue of confusion. Fungal Divers. 39:1-17.
31 Jones, C. J., Edwards, K. J. S., Castaglione, S., Winfield, M. O. and Sala, F. et al. 1997. Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a network of European laboratories. Molecular Breeding 3:381-390.   DOI   ScienceOn
32 Kistler, H. C. and Miao, V. P. W. 1992. New modes of genetic change in filamentous fungi. Annu. Rev. Phytopathol. 30:131-152.   DOI   ScienceOn
33 Masel, A. M., He, C., Poplawski, A. M., Irwin, J. A. G. and Manners, J. M. 1996. Molecular evidence for chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mol. Plant Microbe Interact. 5:339-348.
34 Kumar, N., Jhang, T., Vir, S. and Sharma, T. R. 2010. Molecular and pathological characterization of Colletotrichum falcatum infecting subtropical Indian sugarcane. J. Phytopathol. 159:260-267.
35 Luikart, G., Allendorf, J. M., Cornuet, J. M. and Sherwin, W. B. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89:238-247.   DOI   ScienceOn
36 McDonald, B. A. 1997. The population genetics of fungi: Tools and Techniques. Physiopathology 87:448-453.
37 McDonald, B. A. and Linda, C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349-379.   DOI   ScienceOn
38 Mordue, J. E. M. 1971. Glomerella cingulata. CMI Description of Pathogenic Fungi and Bacteria, No. 315. Commonwealth Mycol. Inst., Kew, UK.
39 Milgroom, M. G. 1996. Recombination and the multilocus structure of fungal populations. Annu. Rev. Phytopathol. 34:457-477.   DOI   ScienceOn
40 Mort, M. E., Crawford, D. J., Santos-Guerra, A., Francisco-Ortega, J., Esselman, E. J. and Wolfe, A. D. 2003. Relationships among the Macaronesian members of Tolpis (Asteraceae: Lactuceae) based upon analyses of inter-simple sequence repeat (ISSR) markers. Taxon 52:511-518.   DOI   ScienceOn
41 Mullis, K., Faloona, F. A., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposium on Quantitative Biology LI:263-273.
42 Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13:1143-1155.   DOI   ScienceOn
43 Penner, G. A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K., Laroch, A., Scoles, G. S. and Gedak, G. 1993. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Meth. Appl. 2:341-345.   DOI
44 Qian, W., Ge, S. and Hong, D. Y. 2001. Genetic variation within and among populations of a wild rice Oryza granulate from China detected by RAPD and ISSR. Theor. Appl. Genet. 102:440-449.   DOI   ScienceOn
45 Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. Genomics 20:176-183.   DOI   ScienceOn
46 Sutton, B. C. 1980. The Coelomycetes; fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, London. 523-527.
47 Ciampi, M. B., Meyer, M. C., Costa, M. J. N., Zala, M., McDonald, B. A. and Ceresini, P. C. 2008. Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. Phytopathology 98:932-941.   DOI   ScienceOn
48 Hyde, K. D., Cai, L., Cannon, P. F., Crouch, J. A., Crous, P. W., Damm, U., Goodwin, P. H., Chen, H., Johnston, P. R., Jones, EBG., Liu, Z. Y., McKenzie, E. H. C., Moriwaki, J., Noireung, P., Pennycook, S. R., Pfenning, L. H., Prihastuti, H., Sato, T., Shivas, R. G., Tan, Y. P., Taylor, P. W. J., Weir, B. S., Yang, Y. L. and Zhang, J. Z. 2009a. Colletotrichum - names in current use. Fungal Divers. 39:147-183.
49 Levi, A., Rowland, L. J. and Hartung, J. S. 1993. Production of reliable randomly amplified polymorphic DNA (RAPD) markers from DNA of woody plants. Hort. Sci. 28:1188-1190.