Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2012.0122

Identification and Characterization of Expansins from Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae)  

Lee, Dae-Weon (Department of Biology, Kyungsung University)
Seo, Jong Bok (Seoul Center, Korea Basic Science Institute)
Kang, Jae Soon (Division of Forest Insect Pests & Diseases, Korea Forest Research Institute)
Koh, Sang-Hyun (Division of Forest Insect Pests & Diseases, Korea Forest Research Institute)
Lee, Si-Hyeock (Department of Agricultural Biotechnology, Seoul National University)
Koh, Young Ho (Ilsong Institute of Life Science, Hallym University)
Publication Information
The Plant Pathology Journal / v.28, no.4, 2012 , pp. 409-417 More about this Journal
Abstract
We identified two novel expansin (EXP) genes in the expressed sequence tag database of Bursaphelenchus xylophilus, designated as Bx-EXPB2 and -EXPB3. Novel Bx-EXPBs encoded 150 amino acids and their similarities in coding sequence were 70.7-84.0% to the previously reported EXPB1 of B. xylophilus. Bx-EXPB2 and Bx-EXPB3 were clustered with Bx-EXPB1 and Bm-EXPB1, respectively, forming the independent phylogeny with other nematode EXPs. All identified Bx-EXPBs contained the signal peptide and were only expressed during the propagative stage, suggesting that they are secreted to facilitate nematode migration through hosts by loosening cell walls during infection. Quantitative real-time PCR analysis showed that the relative accumulation of Bx-EXPB3 mRNAs was the highest among the three Bx-EXPs examined and the order of mRNA accumulation was as follows: Bx-EXPB3 > Bx-EXPB2 >> Bx-EXPB1. Homology modeling of Bx-EXPBs showed that the structurally optimum template was EXLX1 protein of Bacillus subtilis, whichshared residues essential for catalytic activity with Bx-EXPB1 and Bx-EXPB2 except for Bx-EXPB3. Taken together, Bx-EXPB1 and Bx-EXPB2 may be involved migration through plant tissues and play a role in pathogenesis.
Keywords
Bursaphelenchus xylophilus; expansin; homology protein modeling; pathogenicity; pine wilt disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.   DOI   ScienceOn
2 Benkert, P., Knzli, M. and Schwede, T. 2009. QMEAN server for protein model quality estimation. Nucleic Acids Res. 37: W510-514.   DOI   ScienceOn
3 Chen, Z., Chen, S. and Dickson, D. W. 2006. Nematode behaviour and migration through soil and host tissues. Tsinghua University Press, Beijing.
4 Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.
5 Cosgrove, D. J. 1997. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlarge ment. Plant Cell 9:1031-1041.   DOI   ScienceOn
6 Cosgrove, D. J. 2000. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38:109-124.   DOI   ScienceOn
7 Futai, K. 1980. Population dynamics of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) and B. mucronatus in pine seedlings. Appl. Entom. Zool. 15:458-464.   DOI
8 Georgelis, N., Tabuchi, A., Nikolaidis, N. and Cosgrove, D. J. 2011. Structure-function analysis of the bacterial expansin EXLX1. J. Biol. Chem. 286:16814-16823.   DOI   ScienceOn
9 Haegeman, A., Kyndt, T. and Gheysen, G. 2010. The role of pseudo-endoglucanase in the evolution of nematode cell wallmodifying proteins. J. Mol. Evol. 70:441-452.   DOI
10 Haegeman, A., Jones, J. T. and Danchin, E. G. J. 2011. Horizontal Gene Transfer in Nematodes: A Catalyst for Plant Parasitism? Mol. Plant-Microbe Interact. 24:879-887.   DOI   ScienceOn
11 Ishibashi, N., Aoyagi, M. and Kondo, E. 1978. Comparison of the gonad development between the propagative and dispersal forms of the pinewood nematode, Bursaphelenchus lignicolus (Ahelenchoididae). Jpn. J. Nematol. 8:28-31.
12 Jones, J. T., Furlanetto, C. and Kikuchi, T. 2005. Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology 17:641- 646.
13 Kang, J. S., Choi, K. S., Shin, S. C., Moon, I. S., Lee, S. G. and Lee, S. H. 2004. Development of an efficient PCR-based diagnosis protocol for the identification of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Nematology 6:279-285.   DOI   ScienceOn
14 Kang, J. S., Lee, H., Moon, I. S., Lee, Y., Koh, Y. H., Je, Y. H., Lim, K.-J. and Lee, S. H. 2009. Construction and characterization of subtractive stage-specific expressed sequence tag (EST) libraries of the pinewood nematode Bursaphelenchus xylophilus. Genomics 94:70-77.   DOI   ScienceOn
15 Kaplan, W. and Littlejohn, T. G. 2001. Swiss-PDB Viewer (Deep View). Brief. Bioinform. 2:195-197.   DOI   ScienceOn
16 Kelley, L. A. and Sternberg, M. J. E. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protocols 4:363-371.   DOI   ScienceOn
17 Kerff, F., Amoroso, A., Herman, R., Sauvage, E., Petrella, S., File, P., Charlier, P., Joris, B., Tabuchi, A., Nikolaidis, N. and Cosgrove, D.J. 2008. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc. Natl. Acad. Sci. USA 105:16876-16881.   DOI   ScienceOn
18 Kikuchi, T., Shibuya, H., Aikawa, T. and Jones, J. T. 2006. Cloning and characterization of pectate lyases secreted by the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant- Microbe Interact. 19:280-287.   DOI   ScienceOn
19 Kikuchi, T., Jones, J. T., Aikawa, T., Kosaka, H. and Ogura, N. 2004. A family of GHF45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett. 572:201-205.   DOI   ScienceOn
20 Kikuchi, T., Aikawa, T., Kosaka, H., Pritchard, L., Ogura, N. and Jones, J. T. 2007. Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Parasitol. 155:9-17.
21 Kikuchi, T., Li, H., Karim, N., Kennedy, M. W., Moens, M. and Jones, J. T. 2009. Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematology 11:355-364.   DOI   ScienceOn
22 Kondo, E. and Ishibashi, N. 1978. Ultrastructural differences between the propagative and dispersal forms in pinewood nematode, Bursaphelenchus lignicolus, with reference to the survival. Appl. Entomol. Zool. 13:1-11.   DOI
23 Kosaka, H., Aikawa, T., Ogura, N., Tabata, K. and Kiyohara, T. 2001. Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. Eur. J. Plant Pathol. 107:667-675.   DOI
24 Kudla, U., Qin, L., Milac, A., Kielak, A., Maissen, C., Overmars, H., Popeijus, H., Roze, E., Petrescu, A., Smant, G., Bakker, J. and Helder, J. 2005. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Lett. 579:2451-2457.   DOI   ScienceOn
25 Lee, D.-W., Seo, J. B., Nam, M. H., Kang, J. S., Kim, S. Y., Kim, A. Y., Kim, W. T., Choi, J. K., Um, Y., Lee, Y., Moon, I.-S., Han, H. R., Koh, S.-H., Je, Y. H., Lim, K. J., Lee, S. H. and Koh, Y. H. 2011. A combination of biochemical and proteomic analyses reveals Bx-LEC-1 as an antigenic target for the monoclonal antibody 3-2A7-2H5-D9-F10 specific to the pine wood nematode. Mol. Cell. Proteomics 10: M900521- MCP900200.
26 McQueen-Mason, S. J. and Cosgrove, D. J. 1994. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Nat'l. Acad. Sci. USA 91:6574-6578.   DOI   ScienceOn
27 Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L. and McQueen-Mason, S. J. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128:845-864.
28 Mamiya, Y. 1975. The life history of the pinewood nematode, Bursaphelenchus lignicolus. Jpn. J. Nematol. 5:16-25.
29 McQueen-Mason, S. and Cosgrove, D. J. 1995. Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol. 107:87-100.   DOI
30 Odani, K., Sasaki, S., Yamamoto, N., Nishiyama, Y. and Tamura, H. 1985. Differences in dispersal of two associated nematodes, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus in pine seedlings in relation to the pine wilt disease development. J. Jpn. For. Soc. 67:398-403.
31 Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res. 29:2002- 2007.
32 Popeijus, H., Overmars, H., Jones, J., Blok, V., Goverse, A., Helder, J., Schots, A., Bakker, J. and Smant, G. 2000. Degradation of plant cell walls by a nematode. Nature 406:36-37.   DOI   ScienceOn
33 Qin, L., Kudla, U., Roze, E. H. A., Goverse, A., Popeijus, H., Nieuwland, J., Overmars, H., Jones, J. T., Schots, A., Smant, G., Bakker, J. and Helder, J. 2004. Plant degradation: A nematode expansin acting on plants. Nature 427:30.   DOI   ScienceOn
34 Sampedro, J. and Cosgrove, D. 2005. The expansin superfamily. Genome Biology 6:242.   DOI
35 Viglierchio, D. R. and Schmitt, R. V. 1983. On the methodology of nematode extraction from field samples: Baermann funnel modifications. J. Nematol. 15:438-444.
36 Scholl, E. H., Thorne, J. L., McCarter, J. P. and Bird, D. M. 2003. Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol. 4:R39.   DOI
37 Smant, G., Stokkermans, J. P., Yan, Y., De Boer, J. M., Baum, T. J., Wang, X., Hussey, R. S., Gommers, F. J., Henrissat, B., Davis, E. L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95:4906-4911.   DOI
38 van den Brink, J. and de Vries, R. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 91:1477-1492.   DOI   ScienceOn
39 Whitney, S. E. C., Gidley, M. J. and McQueen-Mason, S. J. 2000. Probing expansin action using cellulose/hemicellulose composites Plant J. 22:327-334.   DOI   ScienceOn
40 Xu, B., Janson, J.-C. and Sellos, D. 2001. Cloning and sequencing of a molluscan endo-$\beta$-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur. J. Biochem. 268:3718-3727.   DOI   ScienceOn
41 Abad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G. J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., Caillaud, M.-C., Coutinho, P. M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J. V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T.R., Markov, G. V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Sgurens, B., Steinbach, D., Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T. J., Blaxter, M., Bleve-Zacheo, T., Davis, E. L., Ewbank, J. J., Favery, B., Grenier, E., Henrissat, B., Jones, J. T., Laudet, V., Maule, A. G., Quesneville, H., Rosso, M.-N., Schiex, T., Smant, G., Weissenbach, J. and Wincker, P. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnol. 26:909-915.   DOI   ScienceOn