Browse > Article
http://dx.doi.org/10.5423/PPJ.2011.27.2.164

Potential for Augmentation of Fruit Quality by Foliar Application of Bacilli Spores on Apple Tree  

Ryu, Choong-Min (Industrial Biotechnology and Bioenergy Research Center, KRIBB)
Shin, Jung-Nam (Industrial Biotechnology and Bioenergy Research Center, KRIBB)
Qi, Wang (Department of Plant Pathology, China Agriculture University)
Ruhong, Mei (Department of Plant Pathology, China Agriculture University)
Kim, Eui-Joong (GenoFocus)
Pan, Jae-Gu (Industrial Biotechnology and Bioenergy Research Center, KRIBB)
Publication Information
The Plant Pathology Journal / v.27, no.2, 2011 , pp. 164-169 More about this Journal
Abstract
Previous studies have addressed the management of phyllosphere pathogens by leaf and root-associated microbes. The present study evaluated the effect of the foliar application of three strains of Bacillus spp. on plant growth and fruit quality. The application of a bacilli spore preparation significantly improved leaf growth parameters such as leaf thickness and photosynthesis capacity, indicating that bacilli treatment directly promoted leaf growth. In addition, foliar treatment resulted in an improvement in the key indicators of fruit quality including water, glucose, and sucrose contents. The present results suggest that foliar spraying of beneficial bacilli is a potential treatment of wide application for the improvement of apple quality. Foliar application of bacilli preparation as effective plant growth-promoting rhizobacteria broadens the spectrum of their availability for orchard application.
Keywords
apple; bacilli; foliar application; fruit quality; PGPR;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379-407.   DOI   ScienceOn
2 Wilson, M. and Lindow, S. E. 1993. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83:117-123.   DOI
3 Wilson, M. and Lindow, S. E. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl. Environ. Microbiol. 60:4468-4477.
4 Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., Melo, I. S. and Paré, P. W. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839-851.   DOI
5 Ngugi, H. K., Dedej, S., Delaplane, K. S., Savelle, A. T. and Scherm, H. 2005. Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabscbiteye blueberry. Biol. Control 33:32-38.   DOI   ScienceOn
6 Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932.   DOI   ScienceOn
7 Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.   DOI   ScienceOn
8 Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of ipopeptides produced by Bacillus subtilis GA1 in the reduction ofgrey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160.   DOI   ScienceOn
9 Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guitinan, M. and Backman, P. A. 2008. Bacterial endophytes: Bacillus spp. from vegetable crops as potential biological control agents of black pod rot of cacao. Biol. Control 46:46-56.   DOI   ScienceOn
10 McSpadden-Gardener, B. B. 2004. The nature and application of biocontrol Microbes: Bacillus spp. ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252-1258.   DOI   ScienceOn
11 Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. and Kloepper, J. W. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80:891-894.   DOI   ScienceOn
12 Wang, Y. J., Wang, H. M., Yang, C. H., Wang, Q. and Mei, R. H. 2007. Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiol. Lett. 272:206-213.   DOI   ScienceOn
13 Kinkel, L. L., Wilson, M. and Lindow, S. E. 1996. Utility of microcosm studies for predicting phylloplane bacterium population sizes in the field. Appl. Environ. Microbiol. 62:3413-3423.
14 Kiewnick, S. and Jacobsen, B. J. 1998. Biological control of Cercospora beticola on sugar beet with phyllosphere bacteria. Molecular Approaches in Biological Control: IOBC Bulletin 21:279-282.
15 Kim, D.-S., Cook, R. J. and Weller, D. M. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat growth with reduced tillage. Phytopathology 87:551-558.   DOI   ScienceOn
16 Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35:327-347.   DOI   ScienceOn
17 Kloepper, J. W., Ryu, C.-M. and. Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.   DOI   ScienceOn
18 Kokalis-Burelle, N., Backman, P. A., Rodriguez-Kabana, R. and Ploper, L. D. 1992. Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biol. Control 2:321-328.   DOI
19 Kokalis-Burelle, N., Vavrina, C. S., Rosskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plantgrowth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257-266.   DOI   ScienceOn
20 Linda L. K. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol 35:327-347.   DOI   ScienceOn
21 Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by ice- Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53:2520-2527.
22 Emmert, E. A. and Handelsman, H. 1999. Biocontrol of plant disease: a [gram-] positive perspective. FEMS Microbiol. Lett 171:1-9.   DOI
23 Lucy, M., Reed, E. and Glick, B. R. 2004. Applications of free living plant growth-promoting rhizobacteria. Anton van Leeuw 86:1-25.   DOI   ScienceOn
24 Collins, D. P. and Jacobsen, B. J. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biol. Control 26:153-161.   DOI   ScienceOn
25 Collins, D. P., Jacobsen, B. J. and Maxwell, B. 2003. Spatial and temporal population dynamics of a phyllosphere colonizing Bacillus subtilis biological control agent of sugar beet cercospora leaf spot. Biol. Control 26:224-232.   DOI   ScienceOn
26 Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E. and Arrendale, R. F. 1988. Isolation and identification ofiturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Fd. Chem. 36:366-370.   DOI
27 Jacobsen, B. J., Zidack, N. K. and Larson, B J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272-1275.   DOI   ScienceOn
28 Jones, A. L. and Aldwinkle, H. S. 1990. Compendium of apple and pear diseases APS Press.
29 Hang, N. T. T., Oh, S.-O., Kim, G. H., Hur, J.-S. and Koh, Y. J. 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol. J. 21:59-63.   DOI   ScienceOn
30 Kang, S. H., Cho, H.-S., Cheong, H., Ryu, C.-M., Kim, J. F. and Park, S.-H. 2007. Two bacterial endophytes eliciting boot plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 17:96-103.
31 Andrews, J. H. and Harris, R. F. 2000. The ecology and biogeography of microorganisms on the plant surfaces. Annu. Rev. Phytopathol 38:145-180.   DOI   ScienceOn
32 Katiyar, V. and Goel, R. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14:653-657.
33 Aslanta , R., Cakmakci, R. and ahin, F. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Hortic-AMSTERDAM 111:371-377.   DOI   ScienceOn
34 Andrews, J. H. 1992. Biological control in the phyllosphere. Annu. Rev. Phytopathol 30:603-635.   DOI   ScienceOn
35 Broggini, G. A. L., Duffy, B., Hollinger, E., Schärer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent B. subtilis BD170 (Biopros) in a Swiss apple orchard. Eur. J. Plant Pathol. 111:93-100.   DOI
36 Beattie, G. A. and Lindow, S. 1999. Bacterial colonization of leaves: A spectrum of strategies. Phytopathology 89:353-359.   DOI   ScienceOn