Browse > Article
http://dx.doi.org/10.5423/PPJ.2009.25.4.322

Molecular Analysis of Botrytis cinerea Causing Ginseng Grey Mold Resistant to Carbendazim and the Mixture of Carbendazin Plus Diethofencarb  

Kim, Joo-Hyung (Department of Plant Medicine, Chungbuk National University)
Min, Ji-Young (Department of Plant Medicine, Chungbuk National University)
Bae, Young-Seok (Ginseng Research Division, Ginseng and Medical Plants Research Institute, RDA)
Kim, Heung-Tae (Department of Plant Medicine, Chungbuk National University)
Publication Information
The Plant Pathology Journal / v.25, no.4, 2009 , pp. 322-327 More about this Journal
Abstract
A total of 23 isolates of Botrytis cinerea causing the grey mold were collected from infected ginseng in several fields of Korea. The sensitivity to carbendazim and the mixture of carbendazim plus diethofencarb was determined through a mycelial inhibition test on PDA amended with or without fungicides. B. cinerea isolates were classified as 3 phenotypes, which were the first phenotype resistant to both of carbendazim and the mixture ($Car^RMix^R$), the second one resistant to carbendazim and sensitive to the mixture ($Car^RMix^S$), and the last one sensitive to both of them ($Car^RMix^S$). Carbendazim resistance correlated with a single mutation $\beta$-tubulin gene of B. cinerea amplified with primer pair tubkjhL and tubkjhR causing a change of glutamate to alanine at amino acid position 198. Furthermore, the substitution of valine for glutamate led the resistance to carbendazim and the mixture at the same position of amino acid. PCR-restriction fragment length polymorphism (PCR-RFLP) analysis using the restriction endonuclease, Tsp451 and BstUI allowed differentiation of the PCR fragment of $\beta$-tubulin gene of $Car^SMix^S$ isolates from that of $Car^RMix^R$ and $Car^RMix^S$ isolates. This method will aid in a fast detection of resistance of carbendazim and the mixture of carbendazim plus diethofencarb in B. cinerea in ginseng field.
Keywords
Botrytis cinerea; beta-tubulin gene; carbendazim; fungicide resistance; mixture of carbendazim plus diethofencarb; PCR-RFLP;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Coles, G. C., Bauer, C., Borgsteede, F. H. M., Geerts, S., Klei, T. R., Taylor, M. A. and Waller, P. W. 1992. World association for the advancement of veterinary parasitology (WA.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 44:35-44   DOI   PUBMED   ScienceOn
2 Davidse, L. C. 1986. Benzimidazole fungicides: mechanism of action and biological impact. Annu. Rev. Phytopathol. 24:43-65   DOI   ScienceOn
3 Kato, T., Suzuki, I., Takahashi, J. and Kamoshita, K. 1984. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,4-dichloropheny) carbamate. J. Pesticide Sci. 9:489-495   DOI
4 Kim, J., Min, J., Baek, Y. S., Bae, Y-S. and Kim, H. T. 2007. Variation of the sensitivity of Botrytis cinerea causing ginseng grey mold to fungicides inhibiting $\beta$-tubulin assembly. Res. Plant Dis. 13:177-182 (in Korean)   DOI   ScienceOn
5 Kim, Y-S., Min J. Y., Kang B. K., Van Bach, N., Choi, W. B., Park, E. W. and Kim H. T. 2007. Analysis of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathol. J. 23:187-192   DOI   ScienceOn
6 Leroux, P., Chapeland, E, Desbrosses, D. and Gredt, M. 1999. Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Prot. 18:687-697   DOI   ScienceOn
7 Ma, Z., Felts, D. and Michailides, T. J. 2003. Resistance to azoxystrobin in Alternariaisolates from pistachio in California. Pesticide Biochem. Physiol. 77:66-74   DOI   ScienceOn
8 Ma, Z., Yoshimura, M. A., Holtz, B. A. and Michailides, T. J. 2005. Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Manag. Sci. 61:449-457   DOI   ScienceOn
9 McKay, G. J., Egan, D., Morris, E. and Brown, A. E. 1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR based method. Mycol. Res. 102:671-676   DOI   ScienceOn
10 Myresiotis, C. K., Karaoglanidis, G. S. and Tzavella-Klonari, K. 2007. Resistance of Botrytis cinerea isolates from vegetable crops to nilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis. 91:407-413   DOI   ScienceOn
11 Yourman, L. F. and Jeffers, S. N. 1999. Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis. 83:569-575   DOI   ScienceOn
12 Lennox, C. L. and Spotts, R. A. 2003. Sensitivity of populations of Botrytis cinerea from pear-related sources to benzimidazole and dicarboximide fungicides. Plant Dis. 87:645-649   DOI   ScienceOn
13 Oshima, M., Barmo, S., Okada, K., Takeuchi, T, Kimura, M., Ichiichi, A., Yamaguchi, I. and Fujimura, M. 2006. Survey of mutations of a histidine kinase gene BcOS1 in dicarboximide resistant field isolates of Botrytis cinerea. J. Gen. Plant Pathol. 72:65-73   DOI   ScienceOn
14 Elad, Y., Shabi, E. and Katan, T. 1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and contol of Botrytis cinerea on grapes. Plant Pathol. 37:141-147   DOI
15 Michailides, T. J., Morgan, D. P., Ma, Z., Luo, Y., Felts, D., Doster, M. A. and Reyes, H. 2005. Conventional and molecular assays aid diagnosis of crop diseases and fungicide resistance. California Agricul. 59:115-123   DOI   ScienceOn
16 Coles, G. C., Jackson, F., Pomroy, W. E., Prichard, R. K., von Sanson-Himmelstjerna, G, Silvestre, A., Yaylor, M. A. and Vercruysse, J. 2006. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 136:167-185   DOI   ScienceOn
17 LaMondia, J. A. and Douglas, S. M. 1997. Sensitivity of Botrytis cinerea from Connecticut greenhouses to benzimidazole and dicarboximide fungicides. Plant Dis. 81:729-732   DOI   ScienceOn
18 Yarden, O. and Katan, T. 1993. Mutations leading to substitutions at amino acids 198 and 200 ofbeta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478-1483   DOI   ScienceOn
19 Albertini, C., Gredt, M. and Leroux, P. 1999. Mutations of the $\beta$- tubulin gene associated with different phenotypes ofbenzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochem. Physiol. 64:17-31   DOI   ScienceOn
20 Katan, T., Elad, Y. and Yunis, H. 1989. Resistance to diethofen-carb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol. 38:86-92   DOI
21 Saito, S., Suzuki, S. and Takayanagi, T. 2009. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Pest Manag. Sci. 65:197-204   DOI   ScienceOn
22 Elard, L. and Humbert, J. F. 1999. Importance of the mutation of amino acid 200 of the isotype 1 beta tubulin gene in benzimidazole resistance of the small ruminant parasite Teladorsagia circumcincta. Parasitol. Res. 85:452-456   DOI   ScienceOn
23 Jung, M. K., Wilder, I. B. and Oakley, B. R. 1992. Amino acid alterations in the benA (a-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil. Cytoskeleton 22:170-174   DOI   ScienceOn
24 Ma, Z. and Michailides, T. J. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 24:853-863   DOI   ScienceOn
25 Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M. and Chapeland, F. 2002. Mechanisms of resitance to fungicides in field strains of Botrytis cinerea. Pest Manag. Sci. 58:876-888   DOI   ScienceOn