Browse > Article
http://dx.doi.org/10.5423/PPJ.2006.22.4.339

Role of Riboflavin in Induced Resistance against Fusarium Wilt and Charcoal Rot Diseases of Chickpea  

Saikia Ratul (National Bureau of Agriculturally Important Microorganisms(NBAIM))
Yadav Mukesh (National Bureau of Agriculturally Important Microorganisms(NBAIM))
Varghese Saju (National Bureau of Agriculturally Important Microorganisms(NBAIM))
Singh Bhim Pratap (National Bureau of Agriculturally Important Microorganisms(NBAIM))
Gogoi Dip K (Biotechnology Division, Regional Research Laboratory(CSIR))
Kumar Rakesh (National Bureau of Agriculturally Important Microorganisms(NBAIM))
Arora Dilip K (National Bureau of Agriculturally Important Microorganisms(NBAIM))
Publication Information
The Plant Pathology Journal / v.22, no.4, 2006 , pp. 339-347 More about this Journal
Abstract
Riboflavin caused induction of systemic resistance in chickpea against Fusarium wilt and charcoal rot diseases. The dose effect of 0.01 to 20 mM riboflavin showed that 1.0 mM concentration was sufficient for maximum induction of resistance; higher concentration did not increase the effect. At this concentration, riboflavin neither caused cell death of the host plant nor directly affected the pathogen's growth. In time course observation, it was observed that riboflavin treated chickpea plants were inducing resistance 2 days after treatment and reached its maximum level from 5 to 7 days and then decreased. Riboflavin had no effect on salicylic acid(SA) levels in chickpea, however, riboflavin induced plants found accumulation of phenols and a greater activities of phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) protein, peroxidase was observed in induced plant than the control. Riboflavin pre-treated plants challenged with the pathogens exhibited maximum activity of the peroxidases 4 days after treatment. Molecular weight of the purified peroxidase was 42 kDa. From these studies we demonstrated that riboflavin induced resistance is PR-protein mediated but is independent of salicylic acid.
Keywords
riboflavin; induced resistance; Fusarium wilt; charcoal rot; salicylic acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alvarez, M., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A. and Ryals, J. 1998. Increased tolerance to two Oomycetes pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Natl. Acad. Sci., USA 90:7327-7331
2 Kachroo, A., He, Z., Patkar, R., Zhu, Q., Zhone, J., Li, D., Ronaldo, P., Lamb, C. and Chattoo, B. B. 2003. Induction of $H_{2}O_{2}$ in transgenic rice leads to cell death and enhance resistance to both bacterial and fungal pathogens. Trans. Res. 12: 577-586   DOI   ScienceOn
3 Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155   DOI
4 Mori, T. and Sakurai, E. 1996. Riboflavin affects anthocyanin synthesis in nitrogen culture using strawberry suspended cells. J. Food Sci. 61:698-702   DOI   ScienceOn
5 Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887-898   DOI   ScienceOn
6 Norris, D. M. 1991. Methods for inducing resistance in plants using environmentally safe antioxidants. U.S. Patent No. 5,004,493
7 Ramanathan, A., Vidhyasekaran, P. and Samiyappan, R. 2001. Two pathogenesis-related peroxidases in greengram (Vigna radiata (L.) wilczek) leaves and cultured cells induced by Macrophomina phaseolina (Tassi) Goid. and its elicitor. Microbiol. Res. 156:139-144   DOI   ScienceOn
8 Raskin, I., Turner, I. M. and Melander, W. R. 1989. Regulation of heat production in the inflorescences of an A run lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. USA 86:2214-2218
9 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819   DOI   ScienceOn
10 Wolinsky, I. and Driskell, J. A. D. 1997. Sports nutrition: vitamins and trace element. CRC Press, Boca Raton, FL
11 Zubay, G. 1998. Biochemistry. Brown Publishers, Dubuque, IA
12 Van Peer, R., Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas spp. strain WCS417r. Phytopathology 81:728-734   DOI
13 Gastaldi, G., Laforenza, U., Gasirola, D., Ferrari, G., Tosco, M. and Rindi, G. 1999. Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes. J. Nutr. 129:406-409
14 Jabs, T., Dietrich, R. A. and Dangl, J. F. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853-1856   DOI   ScienceOn
15 Packer, L., Podda, M., Kitazawa, M., Thiele, J., Saliou, C., Witt, E. and Traber, M. G. 1996. Vitamin E and the metabolic antioxidant network. In: Molecular Mechanism of Signaling and Membrane Transport, K.W.A. Wirtz. pp. 283-304, SpringerVerlag, Berlin
16 Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158:871-881
17 Hammerschmidt, R., Nuckles, F. and Kuc, J. 1982. Association of enhance peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20:73-82   DOI
18 Gregory, J. F. 1998. Nutritional properties and significance of vitamin glycosides. Ann. Rev. Nutr. 18:277-296   DOI   ScienceOn
19 Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801-811   DOI   ScienceOn
20 Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358   DOI   ScienceOn
21 Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E. and Van Pelt, J. A. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237   DOI   ScienceOn
22 Young, S. A., Guo, A., Guikema, J. A., White, F. and Leach, J. E. 1995. Rice cationic peroxidase accumulating in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol. 107:1333-1341   DOI
23 Saikia, R., Singh, B. P., Varghese, S., Kashyap, S. and Arora, D. K. 2004. Role of riboflavin in systemic resistance against Fusarium wilt and charcoal rot diseases of chickpea. 45th AMI Conference (23-25 Nov. 2004), pp. 14, National Dairy Research Institute, Karnal, India
24 Van Wees, S. C. M., Pieterse C. M. J., Trijssenaar, A., Van't Westende, Y. A. M., Hartog, F. and Van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Interact. 10:716-724   DOI   ScienceOn
25 Hammerschmidt, R. and Kuc, J. 1995. Induced resistance to disease in plants, Kluwer Academic Publishers, Dordrecht, Netherlands
26 Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36:453-485   DOI   ScienceOn
27 Delaney, T. P. 1997. Genetic dissection of acquired resistance to disease. Plant. Physiol. 113:5-12   DOI
28 Beyer, P., Al-Babilis, S., Ye, X., Lucca, P., Schaub, P., Welsch, R. and Potrykus, I. 2002. Golden rice introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132:506S-510S   DOI
29 Thompson, J. E., Fahnestock, S., Farrall, Liao, D. I., Valent, B. and Jordan, D. B. 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetradydroxynaphthalene reductase. J. Biol. Chem. 275:34867-34872   DOI   ScienceOn
30 Van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V. 1994. Recommendation for naming plant pathogenesis related proteins. Plant Mol. Biol. Rep. 12:245-264   DOI
31 Vicentini, C. B., Forlani, G., Manfrini, M., Romagnoli, C. and Mares, D. 2002. Development of new fungicides against Magnaporthe grisea: synthesis and biological activity of pyrazolo [3,4-d][1,3] thiazine, pyrazolo[1,5-c][1,3,5]thiadiazine and pyrazolo [3,4-d] pyrimidine derivatives. J. Agri. Food Chem. 50:4839-4845   DOI   ScienceOn
32 Wang, S. and Tzeng, D. D. 1998. Methionine-riboflavin mixtures with surfactants and metal ions reduced powdery mildew infection in straw-berry plants. J. Amer. Soc. Sci. 123:987-991
33 Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin $B_{1}$ functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515   DOI   ScienceOn
34 Andrews, J. H., O'Mara, J. K. and Mc Manus, R. S. 2001. Methionin-riboflavin and potassium bicarbonate-polymer sprays control apple flyspeck and sooty blotch. Online Pl. Health Prog., Doi:10.1094/PHP-2001-0706-01-RS
35 Delledonne, M., Xia, Y., Dixon, R. A. and Lamb, C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588   DOI   ScienceOn
36 Bhatti, H. N., Najma, A., Asgher, M., Hanif, M. A. and Zia, M. A. 2006. Purification and thermal characterization of a novel peroxidase from a local chick pea cultivar. Protein & Peptide Lett. 13:799-804   DOI   ScienceOn
37 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680-685   DOI   ScienceOn
38 Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laam, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580   DOI
39 Van Peer, R. and Schippers, B. 1992. Lipopolysaccharides of plant growth promoting Pseudomonas spp. strain WCS417r induced resistance in carnation to Fusarium wilt. Neth. J. Plant Pathol. 98:129-139   DOI
40 Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G. and Nicholson, R. L. 1984. Phenylalanin ammonia-lyase and hdrooxy cinnamate: CoA ligase in maize mesocotyles inoculated with Helminthosporium carbonum. Physiol. Plant Pathol. 25:111-123   DOI
41 Dong, H., Liu, A., Wang, Y., Liu, B., Fan, H., Liu, G., Wang, R., Chen, J., Sun, Y., Zhang, L., Qian, Y., Gao, Z., Xu, Q., Sun, X. and Sang, C. 1995. Control of browm spot by induced resistance in tobacco: Preparation SRS2, its functions to control the disease and to improve qualitative and economic properties of the cured leaves. In: Induced resistance against diseases in plants, ed. by H. Dong, pp 422-427. Science Press, Beijing
42 Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA-gene and of pyroverdine production. Phytopathology 84: 139-146   DOI
43 Saikia, R., Srivastava, A. K., Singh, K. and Arora, D. K. 2005. Effect of iron availability on induction systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology 33:35-40   과학기술학회마을   DOI   ScienceOn