Browse > Article

Glycation-induced Inactivation of Antioxidant Enzymes and Modulation of Cellular Redox Status in Lens Cells  

Shin, Ai-Hyang (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Oh, Chang-Joo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Park, Jeen-Woo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Archives of Pharmacal Research / v.29, no.7, 2006 , pp. 577-581 More about this Journal
Abstract
Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.
Keywords
Glycation; Diabetes; Antioxidant enzymes; Redox status; Lens cells;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Baynes, J. W., Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405-412 (1991)   DOI   ScienceOn
2 Brownlee, M., Biochemistry and molecular biology of diabetic complications. Nature, 414, 813-820 (2000)   DOI   ScienceOn
3 Duhaiman, A. S., Rabbani, N., and Cotlier, E., Camel lens crystallins glycosylation and high molecular weight aggregate formation in the presence of ferrous ions and glucose. Biochem. Biophys. Res. Commun., 173, 823-832 (1990)   DOI   ScienceOn
4 Jiang, Z. Y., Hunt, J. V., and Wolff, S. P., Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem., 202, 384-389 (1992)   DOI
5 Myint, T., Hoshi, S., Ookawara, T., Miyazawa, N., Suzuki, K., and Taniguchi, N., Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim. Biophys. Acta, 1272, 73-79 (1995)   DOI   ScienceOn
6 Sundaresan, M., Yu, Z. Y., Ferrans, C. J., Irani, K., and Finkel, T., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 270, 296-299 (1995)   DOI   ScienceOn
7 Varma, S. D. and Kinoshita, J. H., Sorbitol pathway in diabetic and galactosemic rat lens. Biochim. Biophys. Acta, 328, 632- 640 (1974)
8 Chance, B., Sies, H., and Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59, 527-605 (1979)   DOI
9 Brownlee, M., Vlassara, H., and Cerami, A., Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Int. Med., 101, 527-537 (1984)   DOI   ScienceOn
10 Kil, I. S., Lee, J. H., Shin, A. H., and Park, J.-W., Glycationinduced inactivation of $NADP^+$-dependent isocitrate dehydrogenase: Imp;ications for diabetes and aging. Free Radic. Biol. Med., 37, 1765-1778 (2004)   DOI   ScienceOn
11 Meister, A. and Anderson, M. E., Glutathione. Ann. Rev. Biochem., 52, 711-760 (1983)   DOI   ScienceOn
12 Tauskela, J. S., Hewitt, K., Kang, L. P., Comas, T., Gendron, T., Hakim, A., Hogan, M., Durkin, J., and Morley, P., Evaluation of glutathione-sensitive fluorescent dyes in cortical culture. Glia, 30, 329-341 (2001)   DOI   ScienceOn
13 Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., and Park, J. W., Cytosolic $NADP^+$-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med., 32, 1185-1196 (2002)   DOI   ScienceOn
14 Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T., and Noguchi, N., A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett., 474, 137-140 (2000)   DOI   ScienceOn
15 Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., and Brownlee, M., Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404, 787-790 (2001)   DOI   ScienceOn
16 Tabatabaie, T. and Floyd, R. A., Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch. Biochem. Biophys., 314, 112-119 (1994)   DOI   ScienceOn
17 Shibutani, S., Takeshita, M., and Grollman, A. P., Insertion of specific base during DNA synthesis past the oxidationdamaged base 8-oxodG. Nature, 349, 431-434 (1991)   DOI   ScienceOn
18 Struthers, L., Patel, R., Clark, J., and Thomas, S., Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Anal. Biochem., 255, 20-31 (1998)   DOI   ScienceOn
19 Park, J. W. and Floyd, R. A., Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radic. Biol. Med., 12, 245-250 (1992)   DOI   ScienceOn
20 McCord, J. M. and Fridovich, I., Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 224, 6049-6055 (1969)
21 Vincent, M. A., Brownlee, M., and Russell, J. W., Oxidative stress and programmed cell death in diabetic neuropathy. Ann. New York Acad. Sci., 959, 368-383 (2002)   DOI
22 Biemel, K. M., Friedl, D. A., and Lederer, M. O., Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J. Biol. Chem., 277, 24907- 24915 (2002)   DOI   ScienceOn