Browse > Article

Antiherpetic Activities of Flavonoids against Herpes Simplex Virus Type 1 (HSV-1) and Type 2 (HSV-2) In Vitro  

Lyu Su-Yun (Immune Modulation Research Group, The School of Pharmacy, University of Nottingham)
Rhim Jee-Young (College of Natural Sciences, Seoul Women's University)
Park Won-Bong (College of Natural Sciences, Seoul Women's University)
Publication Information
Archives of Pharmacal Research / v.28, no.11, 2005 , pp. 1293-1301 More about this Journal
Abstract
Flavonoids, a group of low molecular weight phenylbenzopyrones, have various pharmacological properties including antioxidant, anticancer, bactericidal, and anti-inflammatory. We carried out anti-herpetic assays on 18 flavonoids in five classes and a virus-induced cytopathic effect (CPE) inhibitory assay, plaque reduction assay, and yield reduction assay were performed. When flavonoids were applied at various concentrations to Vero cells infected by HSV-1 and 2, most of the f1avonoids showed inhibitory effects on virus-induced CPE. Among the flavonoids, EC, ECG (flavanols), genistein (isoflavone), naringenin (flavanone), and quercetin (flavonol) showed a high level of CPE inhibitory activity. The antiviral activity of flavonoids were also examined by a plaque reduction assay. EC, ECG, galangin, and kaempferol showed a strong antiviral activity, and catechin, EGC, EGCG, naringenin, chrysin, baicalin, fisetin, myricetin, quercetin, and genistein showed moderate inhibitory effects against HSV-1. In these experiments, flavanols and flavonols appeared to be more active than flavones. Furthermore, treatment of Vero cells with ECG and galangin (which previously showed strong antiviral activities) before virus adsorption led to a slight enhancement of inhibition as determined by a yield reduction assay, indicating that an intracellular effect may also be involved.
Keywords
Flavonoids; Herpes simplex virus (HSV); Cytopathic effect (CPE)-inhibitory assay; Selectivity index (SI); Plaque reduction assay; Yield reduction assay; Vero cells;
Citations & Related Records

Times Cited By Web Of Science : 40  (Related Records In Web of Science)
Times Cited By SCOPUS : 31
연도 인용수 순위
1 Bourne, N., Stanberry, L. R., Kern, E. R., Holan, G., Matthews, B., and Bernstein, D. I., Dendrimers, a new class of candidate topical microbicides with activity against Herpes simplex virus infection. Antimicrob. Agents Chemother., 44, 2471-2474 (2000)   DOI   ScienceOn
2 Gius, D. and Laimins, L. A., Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and phorbol ester. J. Virol., 63, 555-563 (1989)
3 Kaul, T. N., Middleton, E., and Ogra, P. L., Antiviral effect of flavonoids on human viruses. J. Med. Virol., 15, 71-79 (1985)   DOI   ScienceOn
4 Middleton Jr., E., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Curr. Med. Chem., 8, 135-153 (2001)   DOI   ScienceOn
5 Serkedjieva, J. and Ivancheva, S., Antiherpes virus activity of extracts from the medicinal plant Geranium sanguineum L. J. Ethnopharmacol., 64, 59-68 (1999)   DOI   ScienceOn
6 Shen, S. C., Lee, W. R., Lin, H. Y., Huang, H. C., Ko, C. H., Yang, L. L., and Chen, Y. C., In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide- induced nitric oxide and prostaglandin E2 production. Eur. J. Pharmacol., 446, 187-194 (2002)   DOI   PUBMED   ScienceOn
7 Wleklik, M., Luczak, M., Panasiak, W., Kobus, M., and Lammer- Zarawska, E., Structural basis for antiviral activity of flavonoidsnaturally occurring compounds. Acta Virol., 32, 522-525 (1988)
8 Ostrove, J. M., Leonard, J., Weck, K. E., Radson, A. B., and Gendelman, H. E., Activation of the human immunodeficiency virus by herpes simplex virus type 1. J. Virol., 61, 3726-3732 (1987)
9 Betancur-Galvis, L., Zuluaga, C., Arno, M., Gonzalez, M. A., and Zaragoza, R. J., Cytotoxic effect (on tumor cells) and in vitro antiviral activity against herpes simplex virus of synthetic spongiane diterpenes. J. Nat. Prod., 65, 189-192 (2002)   DOI   ScienceOn
10 Freshney, R. I., Culture of animal cells, a manual of basic technique, 3rd ed. Wiley-liss Inc, New York, pp. 331-332, (1994)
11 Mucsi, I. and Pragai, B. M., Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids. Experientia, 41, 930 (1985)   DOI   ScienceOn
12 Felser, J., Kichington, P. R., Inchauspe, G., Straus, S. E., and Ostrove, J. M., Cell line containing varicella-zoster virus open reading frame 62 and expressing the 'IE' 175 protein complement ICP4 mutants of herpes simplex virus type 1. J. Virol., 62, 2076-2082 (1988)
13 Lapucci, A., Macchia, M., and Parkin, A., Antiherpes virus agents: a review. Farmaco., 48, 871-895 (1993)
14 Manthey, J. A., Grohmann, K., and Guthrie, N., Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem., 8, 135-153 (2001)   DOI   ScienceOn
15 Charles, E. I., Weimin, X., Raju, K. P., and Richard, K., Retinoic acid reduces the yield of herpes simplex virus in Vero cells and alters the N-glycosylation of viral envelope proteins. Antiviral Res., 47, 29-40 (2000)   DOI   ScienceOn
16 Tsuchiya, Y., Shimizu, M., Hiyama, Y., Itoh, K., Hashimoto, Y., Nakayama, M., Horie, T., and Morita, N., Antiviral activity of natural occurring flavonoids in vitro. Chem. Pharm. Bull.(Tokyo), 33, 3881-3886 (1985)   DOI   ScienceOn
17 Hook, E. W. I., Cannon, R. O., and Nahmias, A. J., Herpes simplex virus infection as a risk factor for human immunodeficiency virus infection in hetero sexuals. J. Infect. Dis., 165, 251-255 (1992)   DOI   ScienceOn
18 Park, N. H., Park, J. B., Min, B. M., and Cherrick, H. M., Combined synergistic antiherpetic effect of acyclovir and chlorhexidine in vitro. Oral Surg. Oral Med. Oral Pathol., 71, 193-196 (1991)   DOI   ScienceOn
19 Dargan, D. J. and H., S.-S. J., The antiviral activity against Herpes simplex virus of the triterpenoid compounds carbenoxolone sodium and cicloxolone sodium. J. Antimicrob. Chemother., 18, 185-200 (1986)   DOI
20 Vlietinck, A. J., Vanden Berghe, D. A., and Haemers, A., Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structure-activity relationships. In Cody, V., Middleton, E., and Harborne, J. B. (Eds.). Prog. Clin. Biol. Res. A. R. Liss, New York, pp. 283-299, (1986)
21 Whitley, R. J., Herpes simplex viruses. Fields, B. N., and Knipe, D. M. (Eds.), In Fields Virology, 4th ed. Raven Press, New York, pp. 2461-2509, (2001)
22 Hudson, J. B., Antiviral compounds from plants. CRC Press, Florida, pp. 119-131, (1990)
23 Vrijsen, R., Everaert, L., and Boeye, A., Antiviral activity of flavones and potentiation by ascorbate. J. Gen. Virol., 69, 1749-1751 (1988)   DOI   ScienceOn
24 Havsteen, B. H., The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 96, 67-202 (2002)   DOI   ScienceOn
25 Mucsi, I., Beladi, I., Pusztai, R., Bakay, M., and Gabor, M., Proceedings 5th Hungarian bioflavonoids symposium. In Farkas, L., Gabor, M., and Kallay, F. (Eds.). Elsevier, Amsterdam, pp. 401-409, (1977)
26 Selway, J. W. T., Plant flavonoids in biology and medicine. Biochemical, pharmacological, and structure-activity relationships. In Cody, V., Middleton, E., and Arborne, J. B. (Eds.). Prog. Clin. Biol. Res. A. R. Liss, New York, pp. 521-536, (1986)
27 Sarisky, R. T., Crosson, P., Cano, R., Quail, M. R., Nguyen, T. T., Wittrock, R. J., Bacon, T. H., Sacks, S. L., Caspers-Velu, L., Hodinka, R. L., and Leary, J. J., Comparison of methods for identifying resistant herpes simplex virus and measuring antiviral susceptibility. J. Clin. Virol., 23, 191-200 (2002)   DOI   ScienceOn
28 Harborne, J. B., The Flavonoids. Advances in Research since 1986. Chapman and Hall, London, pp. 441-473, (1994)