Browse > Article

Inhibitory Action of Minocycline on Lipopolysaccharide-Induced Release of Nitric Oxide and Prostaglandin E2 in BV2 Microglial Cells  

Kim, Sung-Soo (Department of Pharmacology, College of Medicine, Kangwon National University)
Kong, Pil-Jae (Department of Pharmacology, College of Medicine, Kangwon National University)
Kim, Bong-Seong (Department of Pharmacology, College of Medicine, Kangwon National University)
Sheen, Dong-Hyuk (Department of Pharmacology, College of Medicine, Kangwon National University)
Nam, Su-Youn (Department of Pharmacology, College of Medicine, Kangwon National University)
Chun, Wan-Joo (Department of Pharmacology, College of Medicine, Kangwon National University)
Publication Information
Archives of Pharmacal Research / v.27, no.3, 2004 , pp. 314-318 More about this Journal
Abstract
Microglia are the major inflammatory cells in the central nervous system and become activated in response to brain injuries such as ischemia, trauma, and neurodegenerative diseases including Alzheimer's disease (AD). Moreover, activated microglia are known to release a variety of proinflammatory cytokines and oxidants such as nitric oxide (NO). Minocycline is a semi-synthetic second-generation tetracycline that exerts anti-inflammatory effects that are completely distinct form its antimicrobial action. In this study, the inhibitory effects of minocycline on NO and prostaglandin E$_2$ (PGE$_2$) release was examined in lipopolysaccharides (LPS)-challenged BV2 murine microglial cells. Further, effects of minocycline on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were also determined. The results showed that minocycline significantly inhibited NO and PGE$_2$ production and iNOS and COX-2 expression in BV2 microglial cells. These findings suggest that minocycline should be evaluated as potential therapeutic agent for various pathological conditions due to the excessive activation of microglia.
Keywords
Minocycline; Nitric oxide; $PGE_2$; iNOS; COX-2; Microglia;
Citations & Related Records

Times Cited By Web Of Science : 36  (Related Records In Web of Science)
Times Cited By SCOPUS : 34
연도 인용수 순위
1 Amin, A. R., Attur, M. G., Thakker, G. D., Patel, P. D., Vyas, P. R., Patel, R. N., Patel, I. R., and Abramson, S. B., A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc. Natl. Acad. Sci. USA, 93, 14014-14019(1996)   DOI   ScienceOn
2 Bauer, M. K., Lieb, K., Schulze-Osthoff, K., Berger, M., Gebicke-Haerter, P. J., Bauer, J., and Fiebich, B. L., Expression and regulation of cyclooxygenase-2 in rat microglia. Eur. J. Biochem., 243, 726-731 (1997)   DOI   ScienceOn
3 Brown, D. R., Microgliaand prion disease. Microsc. Res. Tech., 54, 71-80 (2001)   DOI   PUBMED   ScienceOn
4 Davies, S. R., Cole, A. A., and Schmid, T. M., Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures. J. Biol. Chem., 271, 25966-25970 (1996)   DOI   PUBMED
5 Gebicke-Haerter, P. J., Microglia in neurodegeneration: molecular aspects. Microsc. Res. Tech., 54, 47-58 (2001)   DOI   PUBMED   ScienceOn
6 He, Y., Appel, S., and Le, W., Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res., 909, 187-193 (2001)   DOI   PUBMED   ScienceOn
7 McGeer, P. L., Itagaki, S., Boyes, B. E., and McGeer, E. G., Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology, 38, 1285-1291 (1988)   DOI   PUBMED
8 Patel, R.N., Attur, M.G., Dave, M.N., Patel, I.V., Stuchin, S.A., Abramson, S.B. and Amin, A.R. A novel mechanism of action of chemically modified tetracyclines: inhibition of COX-2-mediated prostaglandin E2 production. J. Immunol., 163, 3459-3467 (1999)
9 Rogers, J., Luber-Narod, J., Styren, S. D., and Civin, W. H., Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol. Aging, 9, 339-349 (1988)   DOI   ScienceOn
10 Ryan, M. E. and Ashley, R. A., How do tetracyclines work? Adv. Dent. Res., 12, 149-151 (1998)   DOI   ScienceOn
11 Scali, C., Prosperi, C., Vannucchi, M. G., Pepeu, G., and Casamenti, F., Brain inflammatory reaction in an animal model of neuronal degeneration and its modulation by an anti-inflammatory drug: implication in Alzheimer's disease. Eur. J. Neurosci., 12, 1900-1912 (2000)   DOI   ScienceOn
12 Shimizu, T. and Wolfe, L. S., Arachidonic acid cascade and signal transduction. J. Neurochem., 55, 1-15 (1990)   DOI   PUBMED
13 De Clerck, Y. A., Shimada, H., Taylor, S. M., and Langley, K. E. Matrix metalloproteinases and their inhibitors in tumor progression. Ann. N Y Acad. Sci., 732, 222-232 (1994)   DOI   PUBMED
14 Du, Y., Ma, Z., Lin, S., Dodel, R. C., Gao, F, Bales, K. R., Triarhou, L. C., Chernet, E., Perry, K. W., Nelson, D. L., Luecke, S., Phebus, L. A., Bymaster, F. P., and Paul, S. M. Minocycline prevents nigrostriatal dopaminergic neurode-generation in the MPTP model of Parkinson's disease. Proc. Natl. Acad. Sci. USA, 98, 14669-14674 (2001)   DOI   ScienceOn
15 Egger, T., Schuligoi, R., Wintersperger, A., Amann, R., Malle, E., and Sattler, W., Vitamin E (alpha-tocopherol) attenuates cyclo-oxygenase 2 transcription and synthesis in immortalized murine BV-2 microglia. Biochem. J., 370, 459-467 (2003)   DOI   ScienceOn
16 Milner, R. and Campbell, I. L., The extracellular matrix and cytokines regulate microglial integrin expression and activation. J. Immunol., 170, 3850-3858 (2003)
17 Ramamurthy, N., Greenwald, R., Moak, S., Scuibba, J., Goren, A., Turner, G., Rifkin, B., and Golub, L., CMT/Tenidap treatment inhibits temporomandibular joint destruction in adjuvant arthritic rats. Ann. N. Y. Acad. Sci., 732, 427-430 (1994)   DOI   PUBMED
18 McGuire, S. O., Ling, Z. D., Lipton, J. W., Sortwell, C. E., Collier, T. J., and Carvey, P. M., Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp. Neurol., 169, 219-230 (2001)   DOI   ScienceOn
19 Salimi, K., Moser, K. V., Marksteiner, J., Reindl, M., and Humpel, C., GDNF and TGF-beta1 promote cell survival in serum-free cultures of primary rat microglia. Cell Tissue Res., 312,135-139 (2003)   PUBMED
20 Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuraimmunol., 27, 229-237 (1990)   DOI   PUBMED   ScienceOn
21 Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 126, 131-138 (1982)   DOI   ScienceOn
22 Pocock, J. M. and Liddle, A. C., Microglial signalling cascades in neurodegenerative disease. Prog. Brain Res., 132, 555-565 (2001)   DOI   PUBMED
23 Schulz, J. B., Matthews, R. T., and Beal, M. F., Role of nitric oxide in neurodegenerative diseases. Curr. Opin. Neurol., 8, 480-486 (1995)   DOI   PUBMED   ScienceOn
24 Boje, K. M. and Arora, P. K., Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res., 587, 250-256 (1992)   DOI   ScienceOn
25 Sanchez Mejia, R. O., Ona, V. O., Li, M., and Friedlander, R. M., Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery, 48, 1393-1399; discussion 1399-1401 (2001)   DOI   ScienceOn
26 Uitto, V. J., Firth, J. D., Nip, L. and Golub, L. M., Doxycycline and chemically modified tetracyclines inhibit gelatinase A(MMP-2) gene expression in human skin keratinocytes. Ann. N. Y. Acad. Sci., 732, 140-151 (1994)   DOI   PUBMED
27 Gabler, W. L. and Creamer, H. R. Suppression of human neutrophil functions by tetracyclines. J. Periodontal Res., 26, 52-58 (1991)   DOI   PUBMED
28 Arvin, K. L., Han, B. H., Du, Y., Lin, S. Z., Paul, S. M., and Holtzman, D. M. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol., 52, 54-61 (2002)   DOI   ScienceOn
29 Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H., An immortalized cell line expresses pro-perties of activated microglial cells. J. Neurosci. Res., 31, 616-621 (1992)   DOI   ScienceOn
30 Nelson, P. T., Soma, L. A., and Lavi, E. Microglia in diseases of the central nervous system. Ann. Med., 34, 491-500 (2002)   DOI   ScienceOn
31 Tikka, T., Usenius, T., Tenhunen, M., Keinanen, R., and Koistinaho, J., Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J. Neurochem., 78, 1409-1414 (2001)   DOI   ScienceOn
32 Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., and Brosnan, C., Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia, 7, 75-83 (1993)   DOI   PUBMED
33 Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K., Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol., 149, 2736-2741 (1992)
34 Raine, C. S., Multiple sclerosis: immune system molecule expression in the central nervous system. J. Neuropathol. Exp. Neurol., 53, 328-337 (1994)   DOI   PUBMED   ScienceOn
35 Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., and Liu, B., Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem., 81, 1285-1297 (2002)   DOI   ScienceOn