Browse > Article

Acetylcholinesterase Inhibitors from the Aerial Parts of Corydalis speciosa  

Kim, Dae-Keun (College of Pharmacy, Woosuk University)
Lee, Ki-Taek (College of Pharmacy, Woosuk University)
Kim, Sung-Hoon (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University)
Park, Hee-Wook (Department of Oncology, Graduate School of East-West Medical Science, Kyung Hee University)
Lim, Jong-Pil (College of Pharmacy, Woosuk University)
Shin, Tae-Yong (College of Pharmacy, Woosuk University)
Eom, Dong-Ok (College of Pharmacy, Woosuk University)
Yang, Jae-Heon (College of Pharmacy, Woosuk University)
Eun, Jae-Soon (College of Pharmacy, Woosuk University)
Baek, Nam-In (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University)
Publication Information
Archives of Pharmacal Research / v.27, no.11, 2004 , pp. 1127-1131 More about this Journal
Abstract
In a bioassay-guided search for acetylcholinesterase inhibitors from Korean natural resources, four isoquinoline alkaloids, corynoxidine (1), protopine (2), palmatine (3), and berberine (4) have been isolated from the methanolic extract of the aerial parts of Corydalis speciosa. Structures of these compounds were elucidated on the basis of spectroscopic techniques. These compounds inhibited acetylcholinesterase activity in a dose-dependent manner, and the $IC_50$ values of compounds 1-4 were 89.0, 16.1, 5.8, and 3.3 $\mu$ M, respectively.
Keywords
Corydalis speciosa; Acetylcholinesterase; Isoquinoline alkaloids;
Citations & Related Records

Times Cited By Web Of Science : 27  (Related Records In Web of Science)
Times Cited By SCOPUS : 28
연도 인용수 순위
1 Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408-414(1982)   DOI   PUBMED
2 Chung, Y. K., Heo, H. J., Kim, E. K., Kim, H. K., Huh, T. L., Lim, Y., Kim, S. K., and Shin, D. H., Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholine-sterse. Mol. Cells, 11, 137-143(2001)   PUBMED
3 Hussain, R. A., Kim, J., Beecher, C. W. W., and Kinghorn, A. D., Unambiguous carbon-13 NMR assignments of some biologically active protoberberine alkaloids. Heterocycles, 29, 2257-2260 (1989)   DOI
4 Hwang, S. Y., Chang, Y. P., Byun, S. J., Jeon, M. H., and Kim, Y, C., An acetylcholinesterase inhibitor isolated from Corydalis Tuber and its mode of action. Kor. J. Pharmacogn., 27, 91-95 (1996)
5 Kalauni, S. K., Choudhary, M. I., Khalid, A., Manandhar, M. D., Shaheen, F., Atta-ur-Rahman, and Gewali, M. B., New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin. Chem. Pharm. Bull., 50,1423-1426 (2002)   DOI   ScienceOn
6 Kim, D. K. and Lee, K., Inhibitory effect of trans-N-coumaroyl tyramine from the twigs of Celtis chinensis on acetylcho-linesterase. Arch. Pharm. Res., 26, 735-738 (2003)   DOI   ScienceOn
7 Perry, E. K., The cholinergic hypothesis-ten years on. Br. Med. Bull., 42, 63-69 (1986)   DOI   PUBMED
8 Tani, C., Nagakura, N., and Hattori, S., Structures of corynoxidine and epicorynoxidine, new alkaloids from Corydalis koidzumiana. Chem. Lett., 1081-1084(1975b)
9 Bartus, R. T., On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 163, 495-529 (2000)   DOI   PUBMED   ScienceOn
10 Kim, D. K., Lim, J. P., Yang, J. H., Eom, D. O., Eun, J. S., and Leem, K. H., Acetylcholinesterase inhibitors from the roots of Angelica dahurica. Arch. Pharm. Res., 25, 856-859 (2002)   DOI   ScienceOn
11 Ellman, G. L., Courtney, D., Valentino, A., and Featherstone, R. M., A new and rapid colorimetric determination of acetyl-cholinesterase activity. Biochem. Pharmacol., 7, 88-95(1961)   DOI   ScienceOn
12 Riger, F., Shelanski, M. L., and Greene, L. A., The effects of nerve growh factor on acetylcholinesterase and its multiple forms in cultures of rat PC12 pheochromocytoma cells;increased total specific activity and appearance of the 16 S molecular form. Dev. BioI., 76, 238-243 (1980)   DOI   ScienceOn
13 Ahn, D. K., Illustrated Book of Korean Medicinal Herbs. Kyohaksa, Seoul,p. 488. (2001)
14 Jewers, K. and Manchanda, A. H., The proton magnetic resonances spectra of protoberberium salts. J. Chem. Soc. Perkin II. 1393-1396 (1972)
15 Lee, J. H., Lee, K. T., Yang, J. H., Baek, N. I., and Kim, D. K., Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel. Arch. Pharm. Res., 27, 53-56 (2004)   DOI   ScienceOn
16 Tani, C., Nagakura, N., and Sugiyama, N., Studies on the alkaloids of Papaveraceous plants. XXI. Alkaloids of Corydalis speciosa Maxim. (1). The isolation of the tertiary bases by the multi-buffered D.C.C.C. Yakugaku Zasshi, 95(7), 838-842 (1975a)   DOI   PUBMED
17 Kim, D. K., Inhibitory effect of corynoline isolated from the aerial parts of Corydalis incisa on the acetylcholinesterase. Arch. Pharm. Res., 25, 817-819 (2002)   DOI   PUBMED   ScienceOn
18 Park, C. H., Kim, S. H., Choi, W., Lee, Y. J., Kim, J. S., Kang, S. S., and Suh, Y. H., Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med., 62, 405-409(1996)   DOI   ScienceOn
19 Mortensen, S. R., Chanda, S. M., Hooper, M. J., and Padilla, S., Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J. Biochem. Toxicol., 11,279-287 (1996)   DOI   ScienceOn