Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.5.593

Cooling Geometry Dependent Operation Properties in a Diode End-Pumped Monolithic Yb:YAG Laser  

Moon, Hee-Jong (Department of Optical Engineering, Sejong University)
Lim, Changhwan (Quantum Optics Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of the Optical Society of Korea / v.20, no.5, 2016 , pp. 593-600 More about this Journal
Abstract
Operation properties, such as output power, beam radius, and crystal temperature rise were investigated in a diode-pumped edge-cooled monolithic Yb:YAG laser with ~ 4 W pumping level. The output power showed saturation behavior because of severe temperature rise and poor spatial overlapping between pump beam and lasing mode. Face cooling geometry by using a sapphire plate was also investigated. No apparent saturation behavior in output power was observed due to the reduced temperature rise, which could be attributed to efficient heat removal through the crystal-sapphire interface.
Keywords
Yb:YAG; Temperature Rise; Peak Shift; Plane Stress Approximation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057-1069 (1992).   DOI
2 S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40, 1235-1243 (2004).   DOI
3 A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high power solid-state lasers,” Appl. Phys. B 58, 365-372 (1994).
4 S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635-638 (2005).   DOI
5 M. S. N. Kazi, An Overview of Heat Transfer Phenomena (Intech, http://dx.doi.org/10.5772/2623, 2012) Chapter 12.
6 A. Giesen, “Thin disk lasers power scalability and beam quality,” Laser Technik J. 2, 42-45 (2005).   DOI
7 P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089-1091 (1991).   DOI
8 H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105-116 (1997).   DOI
9 T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867-1874 (1997).   DOI
10 J. M. Serres, V. Jambunathan, X. Mateos, P. Loiko, A. Lucianetti, T. Mocek, K. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched compact Yb:YAG laser,” IEEE Photon. J. 7, 1503307 (2015).
11 K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hügel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697-703 (1999).   DOI
12 F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135-144 (2001).   DOI
13 E. Innerhofer, T. Südmeyer, F. Brunner, R. Höring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367-369 (2003).   DOI
14 P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51-54 (2002).   DOI
15 J. T. Verdeyen, Laser Electronics (Prentice-Hall, New Jersey, USA, 1995).
16 O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746-4748 (2011).   DOI
17 H. Z. Cao, F. J. Liu, H. M. Tan, H. Y. Peng, M. H. Zhang, Y. Q. Chen, B. Zhang, B. L. Chen, and C. J. Wang, “Laser diode end-pumped Yb:YAG/LBO green laser,” Laser Physics 19, 919-922 (2009).   DOI
18 S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221-224 (2004).
19 J. Petit, B. Viana, and Ph. Goldner, “Internal temperature measurement of an ytterbium doped material under laser operation,” Opt. Express 19, 1138-1146 (2011).   DOI
20 H. J. Moon, C. Lim, G. H. Kim, and U. Kang, “Study of operation dynamics for crystal temperature measurement in a diode end-pumped monolithic Yb:YAG laser,” Opt. Express 21, 31506-31520 (2013).   DOI
21 R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Materials 11, 245-254 (1999).   DOI
22 T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457-1459 (1993).   DOI
23 S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006).   DOI