Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.3.431

High-precision THz Dielectric Spectroscopy of Tris-HCl Buffer  

Lee, Soonsung (Department of Electrical Engineering, POSTECH)
Kang, Hyeona (Department of Electrical Engineering, POSTECH)
Do, Youngwoong (Department of Electrical Engineering, POSTECH)
Lee, Gyuseok (Department of Electrical Engineering, POSTECH)
Kim, Jinwoo (Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas)
Han, Haewook (Department of Electrical Engineering, POSTECH)
Publication Information
Journal of the Optical Society of Korea / v.20, no.3, 2016 , pp. 431-434 More about this Journal
Abstract
Tris-HCl buffer solution is extensively used in biochemistry and molecular biology to maintain a stable pH for biomolecules such as nucleic acids and proteins. Here we report on the high-precision THz dielectric spectroscopy of a 10 mM Tris-HCl buffer. Using a double Debye model, including conductivity of ionic species, we measured the complex dielectric functions of Tris-HCl buffer. The fast relaxation time of water molecules in Tris-HCl buffer is ~20% longer than that in pure water while the slow relaxation time changes little. This means that the reorientation dynamics of Tris-HCl buffer with such a low Tris concentration is quite different from that of pure water.
Keywords
THz time-domain spectroscopy; Debye relaxation; Tris-HCl buffer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Oh, J. Son, O. Yoo, and D. Lee, “Terahertz characteristics of electrolytes in aqueous Luria-Bertani media,” J. Appl. Phys. 102, 074702 (2007).   DOI
2 A. Sihvola. Electromagnetic Mixing Formulas and Applications (IET Electromagnetic Waves Series 47, London, 1999).
3 L. L. Latour, K. Svoboda, P. P. Mitra, and C. H. Sotak, “Time-dependent diffusion of water in a biological model system,” Proc. Natl. Acad. Sci. 91, 1229-1233 (1994).   DOI
4 E. M. Johnson, D. A. Berk, R. K. Jain, and W. M. Deen, “Hindered Diffusion in Agarose Gels: Test of Effective Medium Model,” Biophys. J. 70, 1017-1026 (1996).   DOI
5 S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
6 D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431-441 (1963).   DOI
7 M. Koeberg, C. C. Wu, D. Kim, and M. Bonn, “THz dielectric relaxation of ionic liquid: water mixtures,” Chem. Phys. Lett. 439, 60-64 (2007).   DOI
8 G. Gomori, “Buffers in the range of pH 6.5 to 9.6,” Exp. Biol. Med. 62, 33-34 (1946).   DOI
9 A. Shundrovsky, C. L. Smith, J. T. Lis, C. L. Peterson, and M. D. Wang, “Proving SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules,” Nat. Struct. Mol. Biol. 13, 549-554 (2006).   DOI
10 M. I. Wallace, L. Ying, S. Balasubramanian, and D. Klenerman, “FRET Fluctuation Spectroscopy: exploring the conformational dynamics of a DNA hairpin loop,” J. Phys. Chem. B. 104, 11551-11555 (2000).   DOI
11 T. Bentin and P. E. Nielsen, “Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA “breathing” dynamics,” Biochem. 35, 8863-8869 (1996).   DOI
12 T. Tanaka and H. Hidaka, “Hydrophobic regions function in calmodulin-enzyme(s) interactions,” J. Biol. Chem. 255, 11078-11080 (1980).
13 J. Wang, E. Palecek, P. E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P. A. M. Farias, “Peptide nucleic acid probes for sequence-specific DNA biosensors,” J. Am. Chem. Soc. 118, 7667-7670 (1996).   DOI
14 P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov, “Protein microchips: use for immunoassay and enzymatic reactions,” Anal. Biochem. 278, 123-131 (2000).   DOI
15 Z. Chang, H. Fan, K. Zhao, M. Chen, P. He, and Y. Fang, “Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes,” Electroanal. 2, 131-136 (2008).
16 P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2446 (2004).   DOI
17 Y. Heyman, A. Buxboim, S. G. Wolf, S. S. Daube, and R. H. Bar-Ziv, “Cell-free protein synthesis and assembly on a biochip,” Nat nanotechnol. 7, 374-378 (2012).   DOI
18 S. Siddiquee, K. Rovina, N. A. Yusof, and K. F. Rodrigues, “Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene,” Sens. Biosens. Res. 2, 16-22 (2014).
19 A. Ulianas, L. Y. Heng, M. Ahmad, H. Y. Lau, Z. Ishak, and T. L. Ling, “A regenerable screen-printed DNA biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination,” Sens. Actuators B 190, 694-701 (2016).
20 J. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys 105, 102033 (2009).   DOI
21 B. M. Fischer, M. Walther, and P. Uhd Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814 (2002).   DOI
22 A. G. Markelz, J. R. Knab, J. Y. Chen, and Y. He, “Protein dynamical transition in terahertz dielectric response,” Chem. Phys. Lett. 442, 413-417 (2007).   DOI
23 J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys. 124, 036101 (2006).   DOI
24 B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday. Discuss. 141, 161-173 (2009).   DOI