Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.3.401

Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime  

Vadjed-Samiei, Mohammad-Hashem (Faculty of Electrical Engineering, Iran University of Science and Technology)
Aghababaeian, Hassan (Faculty of Electrical Engineering, Iran University of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.20, no.3, 2016 , pp. 401-406 More about this Journal
Abstract
This study first proposes a new version of a photonic crystal based de-multiplexer operating under the slow light regime, secondly analyses the structure numerically to demonstrate de-multiplexing operation and finally studies the impact of light speed on the performance of the proposed structure. The operation wavelength is 1.55 µm. The study indicates that, by adjusting the speed of light, around 0.1C, in the main waveguide and in the output channels’ waveguides, an enhancement in the performance of the de-multiplexer will be gained.
Keywords
Photonic crystal; Slow light; Optical de-multiplexer;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. A. B Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166-1185 (2009).   DOI
2 R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687-1706 (1993).   DOI
3 P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19, 2848-2855 (1980).   DOI
4 H.-D. Jang, K.-S. Kim, J.-H. Lee, and J.-C. Jeong, “Transmission performance of 40 gb/s pm duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques,” J. Opt. Soc. Korea 13, 354-360 (2009).   DOI
5 D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, J. E. C. K. Raj, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on siliconfor optical interconnects,” Opt. Express 19, 2401-2409 (2011).   DOI
6 D. D. Do, J. W. An, N. Kim, and K. Y. Lee, “Gaussian apodization technique in holographic demultiplexer based on photopolymer,” J. Opt. Soc. Korea 7, 269-274 (2003).   DOI
7 Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).   DOI
8 A. Rostami, F. Nazaria, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostruct. Fundam. Appl. 8, 14-22 (2010).   DOI
9 T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226-228 (2006).   DOI
10 Y. Wu, K. Hsu and T. Shih, “Thirty-two-channel densewavelength-division multiplexer based on cascade two-dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2080 (2007).
11 H. Benisty, C. Cambournac, F. Van Laere, and D. Van Thourhout, “Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering,” IEEE J. Lightwave Technol. 28, 1201-1208 (2010).   DOI
12 M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28, 1525-1527 (2003).   DOI
13 M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002).   DOI
14 F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004).   DOI
15 S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4-11 (1998).   DOI
16 S. Robinson and R. Nakkeeran, “Photonic crystal ring resonatorbased add drop filters: a review,” Opt. Eng. 52, 060901-1~060901-11 (2013).   DOI
17 M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219-226 (2007).   DOI
18 T. F. Krauss, “Why do we need slow light,” Nature Photon. 2, 448-450 (2008).   DOI
19 H. Aghababaeian and M. H. Vadjed Samiei, “Compact and temperature independent electro-optic switch based on slotted silicon photonic crystal directional coupler,” J. Opt. Soc. Korea 16, 282-287 (2012).   DOI
20 J. M. Brosi, “Slow-light photonic crystal devices for high-speed optical signal processing,” Karlsruhe Series in Photon. & Comm., vol. 4 (2008).
21 A. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129-24138 (2011).   DOI
22 T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666-2670 (2007).   DOI
23 T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D: Appl. Phys. 40, 2659-2665 (2007).   DOI
24 H. Aghababaeian, M. H. Vadjed-Samiei, and N. Granpayeh, “Temperature stabilization of group index in silicon slotted photonic crystal waveguides,” J. Opt. Soc. Korea 15, 398-402 (2011).   DOI
25 A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866-4868 (2004).   DOI
26 http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
27 http://optics.synopsys.com/rsoft/rsoft-passive-device-bandsolve.html
28 http://optics.synopsys.com/rsoft/rsoft-passive-device-fullwave.html