Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.1.008

Ghost Imaging with Different Speckle Sizes of Thermal Light  

Jue, Wang (Department of Optical Engineering, Nanjing University of Science and Technology)
Renlong, Yu (Department of Optical Engineering, Nanjing University of Science and Technology)
Yu, Xin (Department of Optical Engineering, Nanjing University of Science and Technology)
Yanming, Shao (Department of Optical Engineering, Nanjing University of Science and Technology)
Yanru, Chen (Department of Optical Engineering, Nanjing University of Science and Technology)
Qi, Zhao (Department of Optical Engineering, Nanjing University of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.20, no.1, 2016 , pp. 8-12 More about this Journal
Abstract
In this paper, we theoretically and experimentally analyze the impact of speckle size of pseudo-thermal light source on ghost imaging. A larger size of speckle can bring improvements in SNR and visibility. At the same time, the edge blur of the retrieved image will become more serious. We also present a setup which can mitigate the edge blur of larger speckle while maintaining the advantages of higher SNR and visibility by changing the speckle size of the object beam with a concave lens.
Keywords
Ghost imaging; Coherence; Speckle size; Edge blur;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 93602 (2002).
2 F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008).   DOI
3 A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).   DOI
4 F. Ferri, D. Magatti, A. Gatti, and M. Bache, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).   DOI
5 L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006).   DOI
6 Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).   DOI
7 R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).   DOI
8 O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).   DOI
9 P. Zerom, K. Wai, C. Chan, and J. C. Howell, “Entangledphoton compressive ghost imaging,” Phys. Rev. A 84, 061804(R) (2011).   DOI
10 V. Katkovnik and J. Astola, “Compressive sensing computational ghost imaging,” J. Opt. Soc. Am. A 29, 1556-1567 (2012).   DOI
11 J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916-7921 (2009).   DOI
12 M. Bina, D. Magatti, and M. Molteni, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013).   DOI
13 A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78, 063806 (2008).   DOI
14 F. Ferri, D. Magatti, and L. A. Lugiato, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).   DOI
15 B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009).   DOI
16 D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79, 053831 (2009).   DOI
17 T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, 3429-3432 (1995).   DOI
18 R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).   DOI