Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.4.371

Equivalent Optical Bandwidth of Reflective Electro-Absorption Modulator Based Optical Source with a Broadband Seed Light for a 2.5 Gb/s and Beyond Signal Transmission  

Kim, Chul Han (School of Electrical and Computer Engineering, University of Seoul)
Publication Information
Journal of the Optical Society of Korea / v.19, no.4, 2015 , pp. 371-375 More about this Journal
Abstract
The impact of equivalent optical bandwidth on the performance of a system using a reflective electroabsorption modulator (R-EAM) based optical source has been experimentally evaluated with signals operating at 2.5 Gb/s and beyond. The equivalent optical bandwidth of our source with a broadband seed light was simply adjusted by using a bandwidth tunable optical filter. From the measurements, we have estimated the required equivalent optical bandwidth of our source for an error-free transmission (@ bit-error-rate of $10^{-12}$) and a forward error correction (FEC) threshold of $2{\times}10^{-4}$.
Keywords
Passive optical network; Reflective electro-absorption modulator; Broadband light source; Wavelength division multiplexing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. H. Kim, "Performance evaluation of reflective electroabsorption modulator based optical source using a broadband light seed source for colorless WDM-PON applications," Opt. Express 21, 12914-12919 (2013).   DOI
2 J. S. Lee, Y. C. Chung, T. H. Wood, J. P. Meester, C. H. Joyner, C. A Burrus, J. Stone, H. M. Presby, and D. J. Y. DiGiovanni, "Spectrum-sliced fiber amplifier light source with a polarization-insensitive electroabsorption modulator," IEEE Photon. Technol. Lett. 6, 1035-1038 (1994).   DOI   ScienceOn
3 G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," IEEE J. Lightwave Technol. 14, 2141-2148 (1996).   DOI   ScienceOn
4 C. H. Kim, "Impact of various noises on maximum reach in broadband light source based high-capacity WDM passive optical networks," Opt. Express 18, 9859-9864 (2010).   DOI
5 L. Chen, N. Sherwood-Droz, and M. Lipson, "Compact bandwidth-tunable microring resonators," Opt. Lett. 32, 3361-3363 (2007).   DOI   ScienceOn
6 ITU-T Recommendation G.975.1., Forward Error Correction for High Bit Rate DWDM Submarine Systems.
7 E. K. MacHale, G. Talli, P. D. Townsend, A. Borghesani, I. Lealman, D. G. Moodie, and D. W. Smith, "Extendedreach PON employing 10 Gb/s integrated reflective EAM-SOA," in Proc. Eur. Conf. Optical Communication (ECOC2008) (Brussels, Belgium, Sep. 2008), Th.2.F.1.
8 G. Girault, L. Bramerie, O. Vaudel, S. Lobo, P. Besnard, M. Joindot, J.-C. Simon, C. Kazmierski, N. Dupuis, A. Garreau, Z. Belfqih, and P. Chanclou, "10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF," in Proc. Eur. Conf. Optical Communication (ECOC2008) (Brussels, Belgium, Sep. 2008), P.6.08.
9 S.-C. Lin, S.-L. Lee, C.-K. Liu, C.-L. Yang, S.-C. Ko, T.-W. Liaw, and G. Keiser, "Design and demonstration of REAM-based WDM-PONs with remote amplification and channel fault monitoring," J. Opt. Commun. Netw. 4, 336-343 (2012).   DOI   ScienceOn
10 Q. Guo and A. V. Tran, "Demonstration of 40-Gb/s WDMPON system using SOA-REAM and equalization," IEEE Photon. Technol. Lett. 24, 951-953 (2012).   DOI   ScienceOn
11 C.-H. Lee and S.-G. Mun, "WDM-PON based on wavelength-locked Fabry-Perot LDs," J. Opt. Soc. Korea 12, 326-336 (2008).   DOI   ScienceOn
12 B. W. Kim, "RSOA-based wavelength-reuse gigabit WDMPON," J. Opt. Soc. Korea 12, 337-345 (2008).   DOI   ScienceOn