Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.4.327

CO2 Laser Assisted Fabrication of Micro-lensed Single-mode Optical Fiber  

Choi, Hun-Kook (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Yoo, Dongyoon (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Sohn, Ik-Bu (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Noh, Young-Chul (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Sung, Jae-Hee (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Lee, Seong-Ku (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Jeong, Tae-Moon (Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST))
Ahsan, Md. Shamim (Electronics and Communication Engineering Discipline, Khulna University)
Kim, Jin-Tae (Department of Photonic Engineering, Chosun University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.4, 2015 , pp. 327-333 More about this Journal
Abstract
This paper reports the fabrication of various micro-lensed single-mode optical fibers through the use of an enhanced peak power $CO_2$ laser beam. The end faces of the optical fibers are exposed to the $CO_2$ laser beam to form convex, concave, and conical shape optical fiber tips. Peak power of the $CO_2$ laser beam was varied from 0.8 W to 1.5 W depending on the shape of the optical fiber tip. We also discover the dependence of the angle of the optical fiber tip on the rotation angle and the number of $CO_2$ laser irradiations. The angle shows an increasing trend with both these parameters. We achieve a wide range of lenticular fibers with end face angle varying from $4.47^{\circ}$ to $8.13^{\circ}$. Furthermore, we investigate the emission pattern of light from the developed micro-lensed fibers. The proposed $CO_2$ laser based optical fiber reshaping technique shows great consistency, and thus is suitable for commercial applications.
Keywords
$CO_2$ laser; Micro-lensed optical fiber; Beam pattern; Radiation pattern;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Z. Lambak, F. A. Rahman, M. R. Mokhtar, and I. A. Tengku, "Analysis of coupling efficiency on hemispherical fiber lens by method of lines," Opt. Express 17, 2926-2937 (2009).   DOI
2 J. Kerttula, V. Fillippov, Y. Chamorovskii, V. Ustimchik, K. Golant, and O. G. Okhotnikov, "Principles and performance of tapped fiber lasers: From uniform to flared geometry," Appl. Opt. 51, 7025-7038 (2012).   DOI
3 D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, "Bragg grating evanescent field sensor made in biconical taped fiber with femtosecond IR radiation," IEEE Photon. Technol. Lett. 18, 160-162 (2006).   DOI
4 W. S. Ha, K. H. Oh, Y. M. Jung, J. K. Kim, W. J. Shin, I. B. Sohn, D. K. Ko, and J. M. Lee, "Fabrication and characterization of a broadband long-period grating on a hollow optical fiber with femtosecond laser pulses," J. Korean Phys. Soc. 53, 3814-3817 (2008).   DOI   ScienceOn
5 R. Suo, J. Lousteau, H. Li, X. Jiang, K. Zhou, L. Zhang, W. N. MacPherson, H. T. Bookey, J. S. Barton, A. K. Kar, A. Jha, and I. Bennion, "Fiber Bragg gratings inscribed using 800 nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers," Opt. Express 17, 7540-7548 (2009).   DOI
6 X. Fang, C. R. Liao, and D. N. Wang, "Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing," Opt. Lett. 35, 1007-1009 (2010).   DOI   ScienceOn
7 J. K. Lee, "Investigation of sound pressure detection of fiber optic sensor in transformer oil according to TLS and CW laser source," The Journal of the Acoustical Society of Korea 30, 33-41 (2011).   DOI   ScienceOn
8 K. H. Lee, B. J. Ahn, and D. H. Kim, "Fiber optic displacement sensor system for structural health monitoring," Journal of the Korea Society for Nondestructive Testing 31, 374-381 (2011).
9 F. Ahmed, M. S. Ahsan, M. S. Lee, and M. B. G. Jun, "Femtosecond laser based in-fiber long period grating fabrication for improved solution sensing," Proc. SPIE 8607, 86071L (2013).
10 H. Y. Choi, S. Y. Ryu, J. Na, B. H. Lee, I. B. Sohn, Y. C. Noh, and J. M. Lee, "Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems," Opt. Lett. 33, 34-36 (2008).   DOI   ScienceOn
11 J. K. Kim, J. K. Kim, K. H. Oh, I. B. Sohn, W. Shin, H. Y. Choi, and B. Lee, "Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system," IEEE Photon. Technol. Lett. 21, 21-23 (2009).   DOI   ScienceOn
12 I. B. Sohn, Y. S. Kim, Y. C. Noh, I. W. Lee, J. K. Kim, and H. Lee, "Femtosecond laser and arc discharge induced microstructuring on optical fiber tip for the multidirectional firing," Opt. Express 18, 19755-19760 (2010).   DOI
13 D. Jung, I. B. Sohn, Y. C. Noh, C. H. Kim, and H. Lee, "Optical fiber polishing with $CO_2$ laser technology," Korean Society of Precision Engineering 3, 99-100 (2011).
14 M. S. Ahsan, Y. G. Kim, and M. S. Lee, "Formation mechanism of nanostructures in soda-lime glass using femtosecond laser," Journal of Non-Crystalline Solids 357, 851-857 (2011).   DOI   ScienceOn
15 Y. S. Kim, I. B. Sohn, and Y. C. Noh, "The local polishing of material surface using the $CO_2$ laser," Journal of KSLP 12, 7-10 (2009).
16 M. Udera, H. Arun, and A. Alacakir, "Laser polishing of optical fiber end surface," Opt. Eng. 40, 2026-2030 (2001).   DOI   ScienceOn
17 H. Klank, J. P. Kutter, and O. Geschke, "$CO_2$-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems," Lab on a Chip 2, 242-246 (2002).   DOI   ScienceOn
18 C. J. Moorhouse, F. Villarreal, J. J. Wendland, H. J. Baker, D. R. Hall, and D. P. Hand, "$CO_2$ laser processing of alumina ($Al_2O_3$) printed circuit board substrates," IEEE Photonics on Electronics Packaging Manufacturing 28, 249-258 (2005).   DOI   ScienceOn
19 C. K. Chung, S. L. Lin, H. Y. Wang, T. K. Tan, K. Z. Tu, and H. F. Lung, "Fabrication and simulation of glass micromachining using $CO_2$ laser processing with PDMS protection," Appl. Phys. A 113, 501-507 (2013).   DOI   ScienceOn
20 M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a $CO_2$ laser", Appl. Opt. 37, 627-631 (1998).   DOI
21 S. Calixto, M. R. Aguilar, F. J. S. Martin, and L. C. Escobar, "Rod and spherical silica microlenses fabricated by $CO_2$ laser polishing," Appl. Opt. 44, 4547-4556 (2005).   DOI
22 J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, "Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser," ACS Applied Materials and Interfaces 5, 9382-9385 (2013).   DOI   ScienceOn
23 H. K. Choi, M. S. Ahsan, D. Yoo, I. B. Sohn, Y. C. Noh, J. T. kim, D. Jung, and J. H. Kim, "Formation of cylindrical micro-lens array in fused silica glass using laser applications," Proc. SPIE 8923, 89234T (2013).
24 C. H. Lin, L. Jiang, Y. H. Chai, X. Xiao, and S. J. Chen, "Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing," Appl. Phys. A 97, 751-757 (2009).   DOI
25 D. Wu, Q. D. Chen, L. G. Niu, J. Jiao, H. Xia, J. F. Song, and H. B. Sun, "100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision," IEEE Photon. Technol. Lett. 21, 1535-1537 (2009).   DOI   ScienceOn