Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.3.272

Charge Transport Characterization of PbS Quantum Dot Solids for High Efficiency Solar Cells  

Jeong, Young Jin (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials)
Jang, Jihoon (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials)
Song, Jung Hoon (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials)
Choi, Hyekyoung (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials)
Jeong, Sohee (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials)
Baik, Seung Jae (Department of Electrical, Electronic, and Control Engineering, Hankyong National University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.3, 2015 , pp. 272-276 More about this Journal
Abstract
The PbS quantum dot is an emerging photovoltaic material, which may provide high efficiency breakthroughs. The most crucial element for the high efficiency solar cells's development is to understand charge transport characteristics of PbS quantum dot solids, which are also important in planning strategic research. We have investigated charge transport characteristics of PbS quantum dot solids thin films using space charge limited conduction analysis and assessed thickness dependent photovoltaic performances. The extracted carrier drift mobility was $low-10^{-2}cm^2/Vs$ with the estimated diffusion length about 50 nm. These and recently reported values were compared with those from a commercial photovoltaic material, and we present an essential element in further development of PbS quantum dot solids materials.
Keywords
Colloidal quantum dot; Quantum dot solids; Space charge limited conduction; Thickness dependence of photovoltaic performance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, "Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime," Nat. Comm. 5, 1-7 (2014).
2 C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, "Improved performance and stability in quantum dot solar cells through band alignment engineering," Nat. Mater. 13, 796-801 (2014).   DOI   ScienceOn
3 I. J. Kramer and E. H. Sargent, "The architecture of colloidal quantum dot solar cells: Materials to devices," Chem. Rev. 114, 863-882 (2014).   DOI   ScienceOn
4 X. Lan, S. Masala, and E. H. Sargent, "Charge-extraction strategies for colloidal quantum dot photovoltaics," Nat. Mater. 13, 233-240 (2014).   DOI   ScienceOn
5 A. J. Nozik, "Quantum dot solar cells," Physica E14, 115-120 (2002).   DOI   ScienceOn
6 D. V. Talapin and C. B. Murray, "PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors," Science 310, 86-89 (2005).   DOI   ScienceOn
7 J. T. Stewart, L. A. Padilha, M. M. Qazilbash, J. M. Pietryga, A. G. Midgett, J. M. Luther, M. C. Beard, A. J. Nozik, and V. I. Klimov, "Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: The Role of competing energyloss processes," Nano Lett. 12, 622-628 (2012).   DOI   ScienceOn
8 O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, "Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell," Science 34, 1530-1533 (2011).
9 A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Choi, A. Amassian, and E. H. Sargent, "Hybrid passivated colloidal quantum dot solids," Nat. Nanotech. 7, 577-582 (2012).   DOI   ScienceOn
10 J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Choi, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, "Colloidal-quantum-dot photovoltaics using atomic-ligand passivation," Nat. Mater. 10, 765-771 (2011).   DOI   ScienceOn
11 K. Katsiev, A. H. Ip, A. Fischer, I. Tanabe, X. Zhang, A. R. Kirmani, O. Voznyy, L. R. Rollny, K. W. Choi, S. M. Thon, G. H. Carey, X. Cui, A. Amassian, P. Dowben, E. H. Sargent, and O. M. Bakr, "The complete In-Gap electronic structure of colloidal quantum dot solids and its correlation with electronic transport and photovoltaic performance," Adv. Mater. 26, 937-942 (2014).   DOI   ScienceOn
12 P. Stadler, B. R. Sutherland, Y. Ren, Z. Ning, A. Sinchi, S. M. Thon, S. Hoogland, and E. H. Sargent, "Joint mapping of mobility and trap density in colloidal quantum dot solids," ACS Nano 7, 5757-5762 (2013).   DOI   ScienceOn
13 J. K. Kim, J. H. Song, H. Choi, S. J. Baik, and S. Jeong, "Space charge limited conduction in ultrathin PbS quantum dot solid diodes," J. Appl. Phys. 115, 054302 (2014).   DOI   ScienceOn
14 H. Choi, J. K. Kim, J. H. Song, Y. Kim, and S. Jeong, "Increased open-circuit voltage in a Schottky device using PbS quantum dots with extreme confinement," Appl. Phys. Lett. 102, 193902 (2013).   DOI   ScienceOn
15 H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, "Anomalous hysteresis in perovskite solar cells," J. Phys. Chem. Lett. 5, 1511-1515 (2014).   DOI   ScienceOn
16 S. J. Baik, K. Kim, K. S. Lim, S. M. Jung, Y.-C. Park, D. G. Han, S. Lim, S. Yoo, and S. Jeong, "Low-temperature annealing for highly conductive lead chalcogenide quantum dot solids," J. Phys. Chem. C 115, 607-612 (2011).   DOI   ScienceOn
17 S. J. Baik and K. S. Lim, "Nitrogen plasma treatment of fluorine-doped tin oxide for enhancement of photo-carrier collection in amorphous Si solar cells," J. Appl. Phys. 109, 084506 (2011).   DOI   ScienceOn
18 Y. Liu, M. Gibbs, J. Purthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law, "Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids," Nano Lett. 10, 1960-1969 (2010).   DOI   ScienceOn
19 M. S. Kang, A. Sahu, D. J. Norris, and C. D. Frisbie, "Size-dependent electrical transport in CdSe nanocrystal thin films," Nano Lett. 10, 3727-3732 (2010).   DOI   ScienceOn