Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.5.582

Numerical Study of Polarization-Dependent Emission Properties of Localized-Surface-Plasmon-Coupled Light Emitting Diodes with Ag/SiO2 Na  

Moon, Seul-Ki (Department of Optical Engineering, Kongju National University)
Yang, Jin-Kyu (Department of Optical Engineering, Kongju National University)
Publication Information
Journal of the Optical Society of Korea / v.18, no.5, 2014 , pp. 582-588 More about this Journal
Abstract
We study polarization-dependent spontaneous emission (SE) rate and light extraction efficiency (LEE) in localized-surface-plasmon (LSP)-coupled light emitting diodes (LEDs). The closely packed seven $Ag/SiO_2$ core-shell (CS) nanoparticles (NPs) lie on top of the GaN surface for LSP coupling with a radiated dipole. According to the dipole direction, both the SE rate and the LEE are significantly modified by the LSP effect at the $Ag/SiO_2$ CS NPs when the size of Ag, the thickness of $SiO_2$, and the position of the dipole source are varied. The enhancement of the SE rate is related to an induced dipole effect at the Ag, and the high LEE is caused by light scattering with an LSP mode at $Ag/SiO_2$ CS NPs. We suggest the optimum position of the quantum well (QW) in blue InGaN/GaN LEDs with $Ag/SiO_2$ CS NPs for practical application.
Keywords
Light emitting diodes; Surface plasmons; Spontaneous emission; Light extraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Semipolar (20 ${\bar{2}}{\bar{1}}$) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting," J. Disp. Technol. 9, 190-198 (2013).   DOI   ScienceOn
2 E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2006).
3 M. H. Crawford, "LEDs for solid-state lighting: Performance challenges and recent advances," IEEE J. Select. Topics Quantum Electron. 15, 1028-1040 (2009).   DOI   ScienceOn
4 M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, "Bulk GaN based violet light-emitting diodes with high efficiency at very high current density," Appl. Phys. Lett. 101, 223509 (2012).   DOI   ScienceOn
5 J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nat. Photon. 3, 163-169 (2009).   DOI   ScienceOn
6 T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, "Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate," Opt. Express 15, 6670-6676 (2007).   DOI
7 U. T. Schwarz, H. Braun, K. Kojima, Y. Kawakami, S. Nagahama, and T. Mukai, "Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells," Appl. Phys. Lett. 91, 123503 (2007).   DOI   ScienceOn
8 A. Khan, K. Balakrishnan, and T. Katona, "Ultraviolet light-emitting diodes based on group three nitrides," Nat. Photon. 2, 77-84 (2008).   DOI   ScienceOn
9 J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000).   DOI   ScienceOn
10 K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004).   DOI   ScienceOn
11 L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, I.-H. Lee, "Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and $Ag/SiO_2$ nanoparticles," Adv. Func. Mater. 22, 2728-2734 (2012).   DOI   ScienceOn
12 K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005).   DOI   ScienceOn
13 M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-plasmon-enhanced light-emitting diodes," Adv. Mater. 20, 1253-1257 (2008).   DOI   ScienceOn
14 C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, "Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array," Adv. Funct. Mater. 21, 4719-4723 (2011).   DOI   ScienceOn
15 Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B 16, 465-474 (1999).   DOI   ScienceOn
16 Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, "Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode," J. Opt. Soc. Am. B 30, 2599-2606 (2013).   DOI
17 N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, "Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes," Appl. Phys. Lett. 86, 111101 (2005).   DOI   ScienceOn
18 H. Masui, T. J. Baker, M. Iza, H. Zhong, S. Nakamura, and S. P. DenBaars, "Light-polarization characteristics of electroluminescence from InGaN/GaN light-emitting diodes prepared on (11 ${\bar{2}}$2)-plane GaN," J. Appl. Phys. 100, 113109 (2006).   DOI   ScienceOn
19 M. F. Schubert, S. Chhajed, J. K. Kim, and E. F. Schubert, "Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates," Appl. Phys. Lett. 91, 051117 (2007).   DOI   ScienceOn
20 T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, "Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes," Appl. Phys. Lett. 97, 171105 (2010).   DOI   ScienceOn
21 Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, "Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode," Opt. Express 19, A914-A929 (2011).   DOI
22 Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, "Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN," Appl. Phys. Lett. 102, 161103 (2013).   DOI   ScienceOn
23 S.-K. Moon and J.-K. Yang, "Effect of number of $Ag/SiO_2$ core-shells on quantum efficiency of InGaN/GaN light emitting diodes," in preparation (2014).
24 S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, "Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED," Opt. Express 21, 12100-12110 (2013).   DOI
25 A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, Boston, USA, 2000).
26 http://www.lumerical.com/
27 K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
28 Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007).   DOI
29 H. Mertens, A. F. Koenderink, and A. Polman, "Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model," Phys. Rev. B 76, 115-123 (2007).
30 Y. S. Kim, P. T. Leung, and T. F. George, "Classical decay rates for molecules in the presence of a spherical surface: a complete treatment," Surf. Sci. 195, 1-14 (1988).   DOI   ScienceOn
31 G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, "Fluorescence relaxation in the near-field of a mesoscopic metallic particle: Distance dependence and role of plasmon modes," Opt. Express 16, 17654-17666 (2008).   DOI
32 Z. Zhang, D. Lim, and R. E. Diaz, "Image theory for plasmon-modified luminescence near nanospheres," Proc. SPIE 8595, 859508 (2013).
33 I. Abram, I. Rovert, and R. Kuszelwicz, "Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors," IEEE J. Quantum Electron. 34, 71-76 (1998).   DOI   ScienceOn