Browse > Article
http://dx.doi.org/10.3807/JOSK.2011.15.2.118

Analysis of a Triangular-shaped Plasmonic Metal-Insulator-Metal Bragg Grating Waveguide  

Jafarian, Behnaz (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Nozhat, Najmeh (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.15, no.2, 2011 , pp. 118-123 More about this Journal
Abstract
A novel triangular-shaped plasmonic metal-insulator-metal (MIM) Bragg grating waveguide is introduced, whose band-gap is narrower than that of the conventional step type and wider than that of the sawtoothshaped one. Moreover apodized triangular-shaped MIM Bragg grating structures are proposed in order to reduce the side lobes of the transmission spectrum, because the Bragg reflector with a sawtooth profile has a smoother transmission spectrum than that of a triangular-shaped one. The performance of the proposed structures is simulated by using the finite difference time domain method.
Keywords
Plasmonics; Triangular-shaped MIM Bragg grating; Bragg reflector; Band-gap;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 I. S. Jeong, H. R. Park, S. W. Lee, and M. H. Lee, "Polymeric waveguides with Bragg gratings in the middle of the core layer," J. Opt. Soc. Korea 13, 294-298 (2009).   과학기술학회마을   DOI   ScienceOn
2 A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-difference Time-domain Method (Artech House, Boston, USA, 2000).
3 Y. Q. Zhang and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, PIER 96, 155-172 (2009).
4 A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475-1480 (2008).   DOI
5 P. Yeh, Optical Waves in Layered Media (Wiley, New York, USA, 1988).
6 N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, PIER 99, 289-306 (2009).
7 J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express 16, 4888-4894 (2008).   DOI
8 A. Hosseini and Y. Massoud, "A low-loss metal-insulatormetal plasmonic Bragg reflector," Opt. Express 14, 11318-11323 (2006).   DOI
9 H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).   DOI   ScienceOn
10 S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, and M. L. Shuler, "Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor," J. Opt. Soc. Korea 13, 392-397 (2009).   과학기술학회마을   DOI   ScienceOn
11 Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons," Opt. Comm. 259, 690-695 (2006).   DOI   ScienceOn
12 R. Zia, M. D, Selker, P. B. Catrysse, and M. L. Brongrsma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004).   DOI   ScienceOn
13 A. Hosseini, H. Nejati, and Y. Massoud, "Subwavelength three-dimensional Bragg filtering in integrated slot plasmonic waveguides," in Proc. IEEE International Conf. on Nanotechnology (Hong Kong, Aug. 2007), pp. 502-505.   DOI
14 J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices," IEEE J. Select. Topics Quantum Electron. 46, 40-49 (2010).   DOI   ScienceOn
15 Y. Liu, Y. Liu, and J. Kim, "Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles," Opt. Express 18, 11589-11598 (2010).   DOI
16 J. W. Liaw, M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," J. Electromagn. Waves and Appl. 19, 1787-1794 (2005).   DOI
17 Y. Sugawara, T. A. Kelf, and J. J. Baumberg, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).   DOI   ScienceOn
18 F. M. Kong, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconducor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, PIER 82, 257-270 (2008).   DOI
19 S. A. Maier, "Plasmonics: metal nanostructures for subwavelength photonic devices," IEEE J. Select. Topics Quantum Electron. 12, 1214-1220 (2006).   DOI   ScienceOn
20 J. J. Wu, T. J. Yang, and L. F. Shen, "Subwavelength microwave guiding by a periodically corrugated metal wire," J. Electromagn. Waves and Appl. 23, 11-19 (2009).   DOI   ScienceOn
21 S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
22 L. Lin, R. J. Blaikie, and R. J. Reeves, "Surface-plasmonenhanced optical transmission through planar metal films," J. Electromagn. Waves and Appl. 1, 634-637 (2005).
23 Q. Zhang, X. G. Hung, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7554 (2009).   DOI
24 C. Min and G. Veronis, "Absorption switches in metaldielectric- metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009).   DOI
25 J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008).   DOI
26 H. Rather, Surface Plasmon (Springer-Verlag, Berlin, Germany, 1988).
27 Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007).   DOI   ScienceOn