Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.438

Duality of Photonic Crystal Radiative Structures and Antenna Arrays  

Bozorgi, Mahdieh (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Granpayeh, Nosrat (Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 438-443 More about this Journal
Abstract
In this paper, behaviors of photonic crystal (PC) radiative structures and antenna arrays have been compared for two types of uniform and binomial excitations. Appropriate duality has been shown between them. These results can be generalized to other types of excitation and arrangement of photonic crystal radiative arrays such as linear, planar and circular arrays of three dimensional (3D) photonic crystal termination resonators. Using these results in designing photonic circuits has some advantages for shaping a particular radiative beam at the photonic crystal exit, for instance reducing the divergence angle of the main lobe in order to enhance the directivity, for better coupling, or for splitting the emitted beam, for dividing the output beam to the next devices in photonic integrated circuits (PIC). For analysis and simulation of the photonic crystal structures, the finite difference time domain (FDTD) method has been employed.
Keywords
Photonic crystal waveguide; CROW; FDTD; Resonator; Antenna arrays;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. in Quantum Electron. 34, 47-87 (2010).   DOI   ScienceOn
2 H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163-182 (1944).   DOI
3 E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).   DOI   ScienceOn
4 S. John, “Strong localization of photonics in certain disordered dielectric super-lattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).   DOI   ScienceOn
5 O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).   DOI   ScienceOn
6 J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).   DOI   ScienceOn
7 M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight binding description of the coupled defect modes in three dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140-2143 (2000).   DOI   ScienceOn
8 Z. Li, K. Aydin, and E. Ozbay, “Highly directional emission for photonic crystals with a wide bandwidth,” Appl. Phys. Lett. 91, 121105 (2007).   DOI   ScienceOn
9 A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999).   DOI   ScienceOn
10 S. Oliver, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, “Mini-band transmission in a photonic crystal coupled resonator optical waveguide,” Opt. Lett. 26, 1019-1021 (2001).   DOI
11 T. D. Happ, M. Kamp, A. Forchel, J. Gentner, and L. Goldstein, “Two dimensional photonic crystal coupled defect laser diode,” Appl. Phys. Lett. 82, 4-6 (2003).   DOI   ScienceOn
12 F. Ares, G. Franceschetti, and J. A. Rodriguez, “A simple alternative for beam reconfiguration of array antennas,” PIER 88, 227-240 (2008).   DOI
13 H. J. Zhou, B. H. Sun, J. F. Li, and Q. Z. Lin, “Efficient optimization and realization of a shaped beam planar array for very large array application,” PIER 86, 1-10 (2009).   DOI
14 S. W. Yang, Y. K. Chen, and Z. P. Nie, “Simulation of time modulated linear antenna arrays using the FDTD method,” PIER 98, 175-190 (2009).   DOI
15 C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, New Jersey, USA, 2005).
16 E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, New Jersey, USA, 1968).
17 E. Moreno, F. J. Garcia, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-121404 (2004).   DOI
18 H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34, 2569-2571 (2009).   DOI   ScienceOn
19 S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90, 051113 (2007).   DOI   ScienceOn
20 P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghar, “Highly directional emission from photonic crystal waveguides of sub-wavelength width,” Phys. Rev. Lett. 92, 113903 (2004).   DOI   ScienceOn
21 S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005).   DOI   ScienceOn
22 I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078-3080 (2005).   DOI   ScienceOn
23 C. C. Chen, T. Pertsch, R. Iliev, F. Lederer, and A. Tunnermann, “Directional emission from photonic crystal waveguides,” Opt. Express 14, 2423-2428 (2006).   DOI
24 K. Guven and E. Ozbay, “Directivity enhancement and deflection of the beam emitted from a photonic crystal waveguide via defect coupling,” Opt. Express 15, 14973-14978 (2007).   DOI
25 Y. Zhang, Y. Zhang, and B. Li, “Highly efficient directional emission from photonic crystal waveguides for coupling of freely propagated terahertz waves into Si slab waveguides,” Opt. Express 15, 9281-9286 (2007).   DOI
26 L. Pajewski, L. Rinaldi, and G. Schettini, “Enhancement of directivity using 2D electromagnetic crystals near the band-gap edge: a full-wave approach,” PIER 80, 179-196 (2008).   DOI
27 K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structure in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646-2649 (1990).   DOI   ScienceOn
28 G. Guida, A. Delustrac, and A. Priou, “An introduction to photonic band-gap (PBG) materials,” PIER 41, 1-20 (2003).   DOI
29 Z.-H. Zho, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “Enhanced transmission and directional emission via coupled resonator optical waveguides,” Appl. Phys. B 86, 327-331 (2007).   DOI
30 W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self collimation effect,” Opt. Express 15, 1234-1239 (2007).   DOI
31 H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photonics Technol. Lett. 20, 1682-1684 (2008).   DOI   ScienceOn
32 K. B. Chung, “Properties of surface modes used for directional emission from photonic crystal waveguides,” J. Opt. Soc. Korea 12, 7-12 (2008).   과학기술학회마을   DOI   ScienceOn
33 K. B. Chung, “Effects of surface termination on directional emission from photonic crystal waveguides,” J. Opt. Soc. Korea 12, 13-18 (2008).   과학기술학회마을   DOI   ScienceOn
34 S. Kim, Y. Lim, J. Park, and B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” IEEE J. Lightwave Technol. 28, 2023-2029 (2010).   DOI   ScienceOn