Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.363

Two Step on-axis Digital Holography Using Dual-channel Mach-Zehnder Interferometer and Matched Filter Algorithm  

Lee, Hyung-Chul (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Kim, Soo-Hyun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Kim, Dae-Suk (Division of Mechanical System Engineering, Chonbuk National University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 363-367 More about this Journal
Abstract
A new two step on-axis digital holography (DH) is proposed without any assumptions, phase shifting, or complicated optical components. A dual-channel Mach-Zehnder interferometer was employed. Using that setup, the object field can be reconstructed requiring only two step measurements. To eliminate position difference between two charge-coupled device (CCD) cameras, a matched filter algorithm was used. Experimental results are compared to those of the traditional phase shifting technique. The proposed approach can also be applied to single-exposure on-axis DH for real time measurement.
Keywords
Digital holography; Mach-Zehnder interferometer; Matched filter;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasiphase-shifting digital holography,” Appl. Phys. Lett. 85, 1069 (2004).   DOI   ScienceOn
2 Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995-3002 (2006).   DOI
3 Y. Awatsuji, T. Koyama, T. Tahara, K. Ito, Y. Shimozato, A. Kaneko, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel optical-path-length-shifting digital holography,” Appl. Opt. 48, 160-167 (2009).   DOI
4 T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phaseshifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877 (2006).   DOI
5 H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev. 17, 176-180 (2010).   DOI
6 T. Nomura and M. Imbe, “Single-exposure phase-shifting digital holography using a random-phase reference wave,” Opt. Lett. 35, 2281-2283 (2010).   DOI   ScienceOn
7 H. Lee, D. Kim, and S. Kim, “A simple and quantitative alignment procedure between solid state cameras,” Opt. Express 17, 23947-23952 (2009).   DOI
8 G. Situ, J. Ryle, U. Gopinathan, and J. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711-717 (2008).   DOI
9 Y. Zhang and X. Zhang, “Reconstruction of a complex object from two in-line holograms,” Opt. Express 11, 572-578 (2003).   DOI
10 Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004).   DOI   ScienceOn
11 J. Liu and T. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250-252 (2009).   DOI   ScienceOn
12 Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi inline holograms by phase retrieval algorithm,” Opt. Express 11, 3234-3241 (2003).   DOI
13 T. Latychevskaia and H. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901 (2007).   DOI   ScienceOn
14 L. Martinez-Leon, M. Araiza-E, B. Javidi, P. Andres, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express 17, 12900-12909 (2009).   DOI
15 S. Nakadate and M. Isshiki, “Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram,” Appl. Opt. 36, 281-284 (1997).   DOI
16 Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184-6191 (2004).   DOI
17 H. Toge, H. Fujiwara, and K. Sato, “One-shot digital holography for recording color 3-D images,” Proc. SPIE 6912, 69120U (2008).
18 U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).   DOI
19 U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).   DOI   ScienceOn
20 A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a singleexposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163-168 (2007).   DOI   ScienceOn
21 Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).   DOI
22 I. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).   DOI
23 M. Maleki and A. Devaney, “Noniterative reconstruction of complex-valued objects from two intensity measurements,” Opt. Eng. 33, 3243-3253 (1994).   DOI   ScienceOn
24 D. Kim and B. Javidi, “3D object recognition using single exposure on-line digital holography,” Proc. SPIE 6027, 602703-602709 (2006).   DOI