Browse > Article
http://dx.doi.org/10.3807/JOSK.2003.7.1.007

Band Structure Analysis of Strained Quantum Wire Arrays  

Yi, Jong-Chang (School of Electronic and Electrical Engineering, Hong Ik University)
Ji, Jeong-Beom (School of Electronic and Electrical Engineering, Hong Ik University)
Publication Information
Journal of the Optical Society of Korea / v.7, no.1, 2003 , pp. 7-12 More about this Journal
Abstract
A numerical approach for the analysis of quantum wire structures has been presented using a finite-element method which includes the strain analysis and the band analysis of the Luttinger-Kohn Hamiltonian with the deformation potential. A systematic implementation of the multiband Hamiltonian in the finite-element scheme is outlined and the corresponding variational functional is derived for arbitrarily shaped strained quantum wire arrays. This method is then applied to calculate the band structures of strained quantum wire arrays.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. J. Pearah, E. M. Stellini, A. C. Chen, A. M. Moy, K. C. Hsieh, and K. Y. Cheng, Appl. Phys. Lett. 62, 729 (1993).   DOI
2 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).   DOI
3 I-H. Tan, M. Y. He, J. C. Yi, E. Hu, N. Dagli, and A. Evans, J. Appl. Phys. 72, 546 (1992).   DOI
4 K.-J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1976) Chapter 6.
5 T. Yamauchi, T. Takahashi, and Y. Arakawa, Surface Science 267, 291 (1992).   DOI   ScienceOn
6 Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, (Springer, Berlin, 1982), vols. 17 and 22a.
7 C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992).   DOI   ScienceOn
8 G. Ji, D. Huang, U. K. Reddy, T. S. Henderson, R. Houdre, and H. Morkoc, J. Appl. Phys. 62, 3366 (1987).   DOI
9 O. C. Zienkiewicz, Developments in stress analysis, (Applied Science Pub. Ltd., London, 1979) Chapter 1.
10 S. F. Borg, Fundamentals of engineering elasticity, (D. Van Nostrand Co. Ltd., New York, 1962) Chapters 3-4.
11 I. Suemune and L. A. Colderen, IEEE J. Quantum Electron. 24, 1778 (1988).   DOI   ScienceOn
12 M. S. Miller, H. Weman, C. E. Pryor, M. Krishnamurthy, P. M. Petroff, H. Kroemer, and J. L. Merz, Phys. Rev. Lett. 68, 3464 (1992).   DOI   ScienceOn
13 G. E. Pikus and G. L. Bir, Sov. Phys.-Solid State 1, 1502 (1960).
14 G. E. Pikus and G. L. Bir, Symmetry and straininduced effects in semiconductors, (Wiley, New York ,1974) Chapter 3.
15 D. Ahn and S. L. Chuang, IEEE J. Quantum Electron. 24, 2400 (1988).   DOI   ScienceOn
16 R. C. Miller, D. A. Kleinman, and A. C. Gossard, Phys. Rev. B 29, 7085 (1984).   DOI
17 P. P. Silvester and R. L. Ferrari, Finite Elements For Electrical Engineers, (Cambridge University Press, London 1983) Chapter 1.
18 K. Y. Cheng, E. M. Stellini, P. J. Pearah, A. C. Chen, A. M. Moy, and K. C. Hsieh, International Electron Device Meeting '92(IEEE), 875 (1992).   DOI
19 M. Walther, E. Kapon, C. Caneau, D. M. Hwang, and L. M. Schiavone, Appl. Phys. Lett. 62, 2170 (1993).   DOI   ScienceOn
20 J. C. Yi, N. Dagli, and L. A. Coldren, Appl. Phys. Lett. 59, 3015 (1991).   DOI
21 S. W. Corzine, private communications
22 J. C. Yi and N. Dagli, IEEE J. Quantum Electron. 31, 208 (1995).   DOI   ScienceOn
23 S. L. Chuang, Physics of Optoelectronic Devices, (Wiley Inter Science, New York, USA, 1995) Chapter 4.
24 T. P. Bahder, Phys. Rev. B 41, 11992 (1990).   DOI   ScienceOn
25 E. O. Kane, Phys. Rev. 178, 1368 (1965).   DOI
26 S. L. Chuang and C. Y. P. Chao, Phys. Rev. B 43, 9649 (1991).   DOI   ScienceOn
27 Z. Xu and P. M. Petroff, J. Appl. Phys. 69, 6564 (1991).   DOI