Browse > Article
http://dx.doi.org/10.3839/jabc.2019.046

Comparison of mice gut microbiota before and after fasting for a day  

Hong, Jiwan (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Jo, Hyejun (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Publication Information
Journal of Applied Biological Chemistry / v.62, no.4, 2019 , pp. 333-337 More about this Journal
Abstract
In this study, we investigated the effects of fasting on gut microbiota of mice fed normal (CTL) or high-fat diets (HF). Mice were raised for 16 weeks and fasted for a day at the end of the experiment. Fecal samples were collected one day before and after fasting, which were analyzed using MiSeq. Our results showed that the species richness and evenness were decreased in fasted HF group, whereas no difference was observed for CTL groups. Moreover, HF fed mice gut microbiota showed different microbial communities after fasting, while CTL groups did not show microbiota shifts. Differential abundance analysis showed that fasting CTL group mice increased and decreased one operational taxonomic unit (OTU) in S24_7 and one OTU in Ruminococcaceae, respectively. On the other hand, fasting HF group mice decreased 10 OTUs and increased 3 OTUs most of which were classified to Ruminococcaceae. Our results suggest that fasting mice may affect the abundance of Ruminococcaceae species and effects of fasting seem to be more obvious for HF-fed mice compared to those of mice fed CTL-diet.
Keywords
Fasting; Gut microbiota; Microbial community analysis; MiSeq; Obesity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications Cell Metab 19: 181-192 doi:10.1016/j.cmet.2013.12.008   DOI
2 Patterson RE, Sears DD (2017) Metabolic Effects of Intermittent Fasting Annu Rev Nutr 37: 371-393 doi:10.1146/annurev-nutr-071816-064634   DOI
3 Descamps O, Riondel J, Ducros V, Roussel AM (2005) Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting Mech Ageing Dev 126: 1185-1191 doi:10.1016/j.mad.2005.06.007   DOI
4 Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG, Son TG, Maudsley S, Carlson OD, Egan JM, Flyvbjerg A, Howell A (2011) The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women Int J Obes (Lond) 35: 714-727 doi:10.1038/ijo.2010.171   DOI
5 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology Proc Natl Acad Sci USA 102: 11070-11075 doi:10.1073/pnas.0504978102   DOI
6 Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity Nature 444: 1022-1023 doi:10.1038/4441022a   DOI
7 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest Nature 444: 1027-1031 doi:10.1038/nature05414   DOI
8 Lien EL, Boyle FG, Wrenn JM, Perry RW, Thompson CA, Borzelleca JF (2001) Comparison of AIN-76A and AIN-93G diets: a 13-week study in rats Food Chem Toxicol 39: 385-392   DOI
9 Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD (2014) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts FEMS Microbiol Ecol 90: 883-894 doi:10.1111/1574-6941.12442   DOI
10 Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L (2013) Structural modulation of gut microbiota in life-long calorie-restricted mice Nat Commun 4: 2163 doi:10.1038/ncomms3163   DOI
11 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform Appl Environ Microbiol 79: 5112-5120 doi:10.1128/AEM.01043-13   DOI
12 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities Appl Environ Microbiol 75: 7537-7541 doi:10.1128/AEM.01541-09   DOI
13 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools Nucleic Acids Res 41: D590-596 doi:10.1093/nar/gks1219   DOI
14 Konikoff T, Gophna U (2016) Oscillospira: a Central, Enigmatic Component of the Human Gut Microbiota Trends Microbiol 24: 523-524 doi:10.1016/j.tim.2016.02.015   DOI
15 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB Appl Environ Microbiol 72: 5069-5072 doi:10.1128/AEM.03006-05   DOI
16 Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics PeerJ 4: e2584 doi:10.7717/peerj.2584   DOI
17 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation Genome Biol 12: R60 doi:10.1186/gb-2011-12-6-r60   DOI
18 Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles Bioinformatics 30: 3123-3124 doi:10.1093/bioinformatics/btu494   DOI
19 Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, Vieira-Silva S, Debelius J, Pallister T, Mangino M, Raes J, Knight R, Clark AG, Ley RE, Spector TD, Bell JT (2016) Heritable components of the human fecal microbiome are associated with visceral fat Genome Biol 17: 189 doi:10.1186/s13059-016-1052-7   DOI
20 Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, Friedlander C, Hayes RB, Ahn J (2018) A taxonomic signature of obesity in a large study of American adults Sci Rep 8: 9749 doi:10.1038/s41598-018-28126-1   DOI
21 Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota ISME J 8: 1323-1335 doi:10.1038/ismej.2014.14   DOI
22 Schwiertz A, Lehmann U, Jacobasch G, Blaut M (2002) Influence of resistant starch on the SCFA production and cell counts of butyrateproducing Eubacterium spp. in the human intestine J Appl Microbiol 93: 157-162   DOI