Browse > Article
http://dx.doi.org/10.3839/jabc.2018.013

Production of a hypothetical polyene substance by activating a cryptic fungal PKS-NRPS hybrid gene in Monascus purpureus  

Suh, Jae-Won (Department of Biosciences and Bioinformatics, Myongji University)
Balakrishnan, Bijinu (Department of Biosciences and Bioinformatics, Myongji University)
Lim, Yoon Ji (Department of Biosciences and Bioinformatics, Myongji University)
Lee, Doh Won (Department of Biosciences and Bioinformatics, Myongji University)
Choi, Jeong Ju (Department of Biosciences and Bioinformatics, Myongji University)
Park, Si-Hyung (Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University)
Kwon, Hyung-Jin (Department of Biosciences and Bioinformatics, Myongji University)
Publication Information
Journal of Applied Biological Chemistry / v.61, no.1, 2018 , pp. 83-91 More about this Journal
Abstract
Advances in bacterial and fungal genome mining uncover a plethora of cryptic secondary metabolite biosynthetic gene clusters. Guided by the genome information, targeted transcriptional derepression could be employed to determine the product of a cryptic gene cluster and to explore its biological role. Monascus spp. are food grade filamentous fungi popular in eastern Asia and several genome data belong to them are now available. We achieved transcription activation of a cryptic fungal polyketide synthase-nonribosomal peptide synthase gene Mpfus1 in Monascus purpureus ${\Delta}MpPKS5$ by inserting Aspergillus gpdA promoter at the upstream of Mpfus1 through double crossover gene replacement. The gene cluster with Mpfus1 show a high similarity to those for the biosynthesis of conjugated polyene derivatives with 2-pyrrolidone ring and the mycotoxin fusarin is the representative member of this group. The ${\Delta}MpPKS5$ is incapable of producing azaphilone pigment, providing an excellent background to identify chromogenic and UV-absorbing compounds. Activation of Mpfus1 resulted in a yellow hue on mycelia and its methanol extract exhibit a maximum absorption at 365 nm. HPLC analysis of the organic extracts indicated the presence of a variety of yellow compounds in the extract. This implies that the product of MpFus1 is metabolically or chemically unstable. LC-MS analysis guided us to predict the MpFus1 product and to propose that the Mpfus1-containing gene cluster encode the biosynthesis of a desmethyl analogue of fusarin. This study showcases the genome mining in Monascus and the possibility to unveil new biological activities embedded in it.
Keywords
Activation of cryptic gene; Aspergillus gpdA promoter; Double crossover gene replacement; Fusarin analogue; Monascus purpureus; Polyketide synthase-nonribosomal peptide synthase hybrid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Balakrishnan B, Chandran R, Park SH, Kwon HJ (2016) Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization. Bioorg Med Chem Lett 26: 392-396   DOI
2 Balakrishnan B, Chen CC, Pan TM, Kwon HJ (2014) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett 55: 1640-1643   DOI
3 Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97: 6337-6345   DOI
4 Balakrishnan B, Lim YJ, Hwang SH, Lee DW, Park SH, Kwon HJ (2017a) Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant. J Appl Biol Chem 60: 249-256
5 Balakrishnan B, Park SH, Kwon HJ (2017b) A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol Lett 39: 163-169   DOI
6 Balakrishnan B, Park SH, Kwon HJ (2017c) Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus. Appl Biol Chem 60: 437-446   DOI
7 Barajas JF, Phelan RM, Schaub AJ, Kliewer JT, Kelly PJ, Jackson DR, Luo R, Keasling JD, Tsai SC (2015) Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem Biol 22: 1018-1029   DOI
8 Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F (2017) Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci 8:4917-4925   DOI
9 Bijinu B, Suh JW, Park SH, Kwon HJ (2014) Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv 4: 59405-59408   DOI
10 Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 13: 28-42
11 Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F (2015) Edible flamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Safety 14: 555-567   DOI
12 Chiang YM, Oakley BR, Keller NP, Wang CC (2010) Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol 86: 1719-1736   DOI
13 Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nanomachines begin to reveal their secrets. Org Biomol Chem 5: 2010-2026   DOI
14 de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842   DOI
15 Diaz-Sanchez V, Avalos J, Limon MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78: 7258-7266   DOI
16 Li Y, Weissman KJ, Muller R (2008) Myxochelin biosynthesis: direct evidence for two-and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc 130: 7554-7555   DOI
17 Donzelli B, Krasnoff S, Churchill A, Vandenberg J, Gibson D (2010) Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Curr Genet 56: 151-162   DOI
18 Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Adv 3: 18228-18247   DOI
19 Gelderblom WCA, Thiel PG, Van der Merwe KJ, Marasas WFO, Spies HSC (1983) A mutagen produced by Fusarium moniliforme. Toxicon 21: 467-473   DOI
20 Kwon HJ, Balakrishnan B, Kim YK (2016) Some Monascus purpureus genomes lack the monacolin K biosynthesis locus. J Appl Biol Chem 59: 45-47   DOI
21 Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol. 11: 639-648   DOI
22 Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact 14: 580-584   DOI
23 Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM, Connolly LR, Freitag M, Guldener U, Tudzynski B, Humpf HU (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20: 1055-1066   DOI
24 Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40: 169-181   DOI
25 Redkar RJ, Herzog RW, Singh NK (1998) Transcriptional activation of the Aspergillus nidulans gpdA promoter by osmotic signals. Appl Environ Microbiol 64: 2229-2231
26 Zabala AO, Xu W, Chooi YH, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19: 1049-1059   DOI
27 van der Lee TAJ, Medema MH (2016) Computational strategies for genomebased natural product discovery and engineering in fungi. Fungal Genet Biol 89: 29-36   DOI
28 Yin Y, Cai M, Zhou X, Li Z, Zhang Y (2016) Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol 100: 7787-7798   DOI