Browse > Article
http://dx.doi.org/10.3839/jabc.2016.060

Flavonoids from the flower of Chrysanthemum morifolium  

Kim, Hyoung-Geun (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University)
Ko, Jung-Hwan (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University)
Lee, Yeong-Geun (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University)
Pak, Ha-Seung (Flower Research Institute)
Kim, Dong-Chan (Flower Research Institute)
Son, Kuk-Seong (Flower Research Institute)
Baek, Yun-Su (Floriculture Research Division, National Institute of Horticultural and Herbal Science, RDA)
Kwon, Oh-Keun (Floriculture Research Division, National Institute of Horticultural and Herbal Science, RDA)
Shin, Hak-Ki (Floriculture Research Division, National Institute of Horticultural and Herbal Science, RDA)
Baek, Nam-In (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University)
Publication Information
Journal of Applied Biological Chemistry / v.59, no.4, 2016 , pp. 357-360 More about this Journal
Abstract
Chrysanthemum morifolium flowers were extracted with 80 % aqueous MeOH, and the concentrated extract was partitioned into EtOAc, n-butyl alcohol (n-BuOH), and water fractions. The repeated silica gel and octadecyl silica gel column chromatographies for the EtOAc and n-BuOH fractions led to isolation of four flavonoids. The chemical structures of the compounds were determined as acacetin (1), apigenin (2), apigenin-7-O-${\beta}$-$\small{D}$-glucopyanoside (3), acacetin-7-O-${\beta}$-$\small{D}$-glucopyranoside (4) based on spectroscopic data analyses including nuclear magnetic resonance, mass spectrometry, and infrared spectrometry.
Keywords
Acacetin; Acacetin-7-O-${\beta}$-$\small{D}$-glucopyranoside; Apigenin; Apigenin-7-O-${\beta}$-$\small{D}$-glucopyanoside; Chrysanthemum morifolium; Flavonoid; Flower; Acacetin-7-O-${\beta}$-$\small{D}$-glucoside; Cosmetin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee HJ, Hwang YI, Park E, Choi SU (2011) Antihepatotoxic and antigenotoxic effects of herb tea composed of Chrysanthemum morifolium Ramat. J Food Sci Nutr 40: 78-83
2 Lee JH, Park KH, Lee MH, Kim HT, Seo WD, Kim JY, Baek IY, Jang DS, Ha TJ (2013) Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem 136: 843-852   DOI
3 Lee JS, Kim HJ, Lee YS (2003) A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med 69: 859-861   DOI
4 Lee YG, Seo KH, Hong EK, Kim DM, Kim YE, Baek NI (2016) Diels-Alder type adducts from the fruits of Morus alba L. J Appl Biol Chem 59: 91-94   DOI
5 Malmir M, Gohari AR, Saeidnia S, Silva O (2015) A new bioactive monoterpene-flavonoid from Satureja khuzistanica, Fitoterapia 105: 107-112   DOI
6 Ministry of Agriculture, Food and Rural Affairs (2014) 2013 Flower Cultivation Status. Ministry of Agriculture, Food and Rural Affairs: 11-1543000-000108-10
7 Miyazawa M, Hisama M (2003) Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci Biotechnol Biochem 67: 2091-2099   DOI
8 Mohamed NH (2010) Anticancer activity of Marrubium alysson L. and its phenolic constituents. Recent Progress in Medicinal Plants 27: 185-193
9 Semwal RB, Semwal DK (2012) Analgesic and anti-inflammatory activities of extracts and fatty acids from Celtis australis L NPJ 2: 323-327   DOI
10 Tavares F, Costa G, Francisco V, Liberal J, Figueirinha A, Lopes MC, Cruz MT, Batista MT (2014) Cymbopogon citratus industrial waste as a potential source of bioactive compounds. J Sci Food Agric 95: 2652-2659
11 Thanigaimalai P, Hoang TAL, Lee KC, Bang SC, Sharma VK, Yun CY, Roh E, Hwang BY, Kim Y, Jung SH (2010) Structural requirement(s) of Nphenylthioureas and benzaldehyde thiosemicarbazones as inhibitors of melanogenesis in melanoma B 16 cells. Bioorg Med Chem Lett 20: 2991-2993   DOI
12 Wang G, Zhao Zl, Xue P, Ma F, Zhang D, Wang N, Li M (2015) Chemical constituents from flowers of Scabiosa tschilliensis. Zhongguo Zhong Yao Za Zhi 40: 807-813
13 Wang Z, Gong Y, Zeng Dl, Chen L, Lin G, Huang C, Sun W, Chen MC, Hu G, Chen R (2016) Inhibitory effect of apigenin on losartan metabolism and cyp2c9 activity in vitro. Pharmacology 98: 183-189   DOI
14 Xiang ZB, Liu XY, Heng LS, Chen YW (2013) Chemical constituents from n-butanol extract of Rabdosia japonica var. glaucocalyx. Asian J Chem 136: 843-852
15 Xie Y, Qu J, Wang Q, Wang Y, Yoshikawa M, Yuan D (2012) Comparative Evaluation of Cultivars of Chrysanthemum morifolium Flowers by HPLC-DAD-ESI/MS Analysis and Antiallergic Assay. J Agr Food Chem 60: 12574-12583   DOI
16 Xie YY, Yuan D, Yang JY, Wang LH, Wu CF (2009) Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cell. J Asian Nat Prod Res 11: 771-778   DOI
17 Yadav P, Yadava RN (2013) Antioxidant activity of a new flavone glycoside from the seeds of Albizzia odoratissima Benth. Int J of Phyto Pharm 3: 81-85
18 Yu ML, Guo YL, Wang JM, Wang CM, Wang AH, Zhang XM, Tu YY, Bai MC (2015) The risk of flavonoids utilization in the anti-tumor therapy. Lat Am J Pharm 34: 627-630
19 Yuan J, Hao LJ, Wu G, Wang S, Duan J, Xie GY, Qin MJ (2015) Effects of drying methods on the phytochemicals contents and antioxidant properties of chrysanthemum flower heads harvested at two developmental stages. J Funct Foods 19: 786-795   DOI
20 Zheng C, Dong Q, Du Z, Wang P, Ding K (2015) Structural elucidation of a polysaccharide from Chrysanthemum morifolium flowers with antiangiogenic activity. Int J Biol Macromol 79: 674-680   DOI
21 Coombs MRP, Harrison ME, Hoskin DW (2016) Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett 380: 424-433   DOI
22 Agar OT, Dikmen M, Ozturk N, Yilmaz MA, Temel H, Turkmenoglu FP (2015) Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules 20: 17976-18000   DOI
23 Aprotosoaie AC, Mihai CT, Vochita G, Rotinberg P, Trifan A, Luca SV, Petreus T, Gille E, Miron A (2016) Antigenotoxic and antioxidant activities of a polyphenolic extract from European Dracocephalum moldavica L. Ind Crop Prod 79: 248-257   DOI
24 Bouzaiene NN, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144: 80-85   DOI
25 Kang GH, Chang EJ, Choi SW (1999) Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctorius L.) seeds. J Food Sci Nutr 4: 221-225
26 Karim AA, Azlan A, Ismail A, Hashim P, Gani SSA, Zainudin BH, Abdullah NA (2014) Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med 14: 381   DOI
27 Karlickova J, Riha M, Filipsky T, Macakova K, Hrdina R, Mladenka P (2016) Antiplatelet effects of flavonoids mediated by inhibition of arachidonic acid based pathway. Planta Med 82: 76-83
28 Komape NPM, Aderogba M, Bagla VP, Masoko P, Eloff JN (2014) Antibacterial and anti-oxidant activities of leaf extracts of Combretum vendae (combretecacea) and the isolation of an anti-bacterial compound. Afr J Tradit Complement Altern Med 11: 73-77   DOI