Browse > Article
http://dx.doi.org/10.3839/jabc.2016.048

Downregulation of fungal cytochrome c peroxidase expression by antifungal quinonemethide triterpenoids  

Seo, Woo-Duck (National Institute of Crop Science, Rural Development Administration)
Lee, Dong-Yeol (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
Park, Ki Hun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
Kim, Jin-Hyo (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
Publication Information
Journal of Applied Biological Chemistry / v.59, no.4, 2016 , pp. 281-284 More about this Journal
Abstract
To handle the development of antifungal drug resistance, the development of new structural modules and new modes of action for antifungals have been highlighted recently. Here, the antifungal activity of quinonemethidal triterpenoids such as celastrol, dihydrocelastrol, iguestein, pristimerin, and tingenone isolated from Tripterygium regelii were identified (MIC $0.269-19.0{\mu}M$). C. glabrata was the most susceptible to quinonemethide among the tested fungi. Furthermore, quinonemethide suppressed cyctochrome c peroxidase expression dramatically, decreasing fungal viability caused by the accumulation of hydrogen peroxide. Thus, cyctochrome c peroxidase downregulation of quinonemethide may be a key mode of action for antifungals.
Keywords
Anti-fungal; Antioxidant; Cytochrome c peroxidase; Quinonemethide triterpenoid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pasqua G, Tocci N, Simonetti G, D'Auria FD, Panella S, Palamara AT, Valletta A, Pasqua G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotech 91: 977-987   DOI
2 Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, Park KH, Rho MC, Lee WS (2010) SARS-CoV 3CLpro inhibitory effects of quinonemethide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 20: 1873-1876   DOI
3 Seo HR, Seo WD, Pyun BJ, Lee BW, Jin YB, Park KH, Seo EK, Lee YJ, Lee YS (2011) Radiosensitization by celastrol is mediated by modification of antioxidant thiol molecules. Chem Biol Interact 193: 34-42   DOI
4 Su XH, Zhang ML, Zhan WH, Huo CH, Shi QW, Gu YC, Kiyota H (2009) Chemical and pharmacological studies of the plants from genus Celastrus. Chem Biodivers 6: 146-161   DOI
5 Wang C, Shi C, Yang X, Yang M, Sun H, Wang C (2014) Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism. Eur J Pharmacol 744: 52-58   DOI
6 Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominquez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41: 973-981   DOI
7 Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochem 68: 732-766   DOI
8 Byun JY, Kim MJ, Eum DY, Yoon CH, Seo WD, Park KH, Hyun JW, Lee YS, Yoon MY, Lee SJ (2009) Reactive oxygen species-dependent activation of Bax and poly (ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol 76: 734-744   DOI
9 Cox GM, Harrison TS, McDade HC, Taborda CP, Heinrich G, Casadevall A, Perfect JR (2003) Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71: 173-180   DOI
10 Do E, Hu G, Caza M, Oliveira D, Kronstad JW, Jung WH (2015) Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 75: 11-19   DOI
11 Dos Santos VA, Dos Santos DP, Castro-Gamboa I, Zanoni MV, Furlan M (2010) Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae). Molecules 15: 6956-6973   DOI
12 Estevinho ML, Afonso SE, Feas X (2011) Antifungal effect of lavender honey against Candida albicans, Candida krusei and Cryptococcus neoformans. J Food Sci Technol-Mysore 48: 640-643   DOI
13 Gao JM, Wu WJ, Zhang JW, Konishi Y (2007) The dihydro-beta-agarofuran sesquiterpenoids. Nat Prod Rep 24: 1153-1189   DOI
14 Martins D, Kathiresan M, English AM (2013) Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med 65: 541-551   DOI
15 Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30: 1845-1855   DOI
16 Giles SS, Perfect JR, Cox GM (2005) Cytochrome c peroxidase contributes to the antioxidant defense of Cryptococcus neoformans. Fungal Genet Biol 42: 20-29   DOI
17 Heitman J, Lin XR (2006) The biology of the Cryptococcus neoformans species complex. Ann Rev Microbiol 60: 69-105   DOI
18 Kim JH, Lee HO, Cho YJ, Kim J, Chun J, Choi J, Lee Y, Jung WH (2014) A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans. PLoS One 9: e89122   DOI
19 Luo DQ, Wang H, Tian X, Shao HJ, Liu JK (2005) Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag Sci 61: 85-90   DOI
20 Allison AC, Cacabelos R, Lombardi VR, Alvarez XA, Vigo C (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 25: 1341-1357   DOI
21 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254   DOI
22 Narasipura SD, Ault JG, Behr MJ, Chaturvedi V, Chaturvedi S (2003) Characterization of Cu, Zn superoxide dismutase (SOD1) gene knockout mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. Mol Microbiol 47: 1681-1694   DOI
23 Narasipura SD, Chaturvedi V, Chaturvedi S (2005) Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol Microbiol 55: 1782-1800   DOI