Browse > Article

Novel Erbium(III)-Encapsulated Complexes Based on ${\pi}$-Extended Anthracene Ligands Bearing G3-Aryl-Ether Dendron: Synthesis and Photophysical Studies  

Baek, Nam-Seob (IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute)
Kim, Yong-Hee (IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute)
Roh, Soo-Gyun (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (IRTC), Korea University)
Lee, Dong-Hyun (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (IRTC), Korea University)
Seo, Kang-Deuk (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (IRTC), Korea University)
Kim, Hwan-Kyu (Department of Advanced Materials Chemistry and Center for Advanced Photovoltaic Materials (IRTC), Korea University)
Publication Information
Macromolecular Research / v.17, no.9, 2009 , pp. 672-681 More about this Journal
Abstract
A series of inert and photo-stable Er(III)-encapsulated complexes based on ${\pi}$-extended dendritic anthracene ligands bearing G3-aryl-ether dendron ([G3-AnX]-$CO_2H$), which retain different ${\pi}$-bridging systems, such as single (X= S), double (X= D) and triple (X= T) bonds was designed and synthesized to establish the structure-property relationship. The near infrared emission intensities of Er(III)-encapsulated complexes were enhanced dramatically by increasing the ${\pi}$-conjugated extension of anthracene ligands. The time-resolved luminescence spectra show monoexponential decays with a lifetime of $2.0{\sim}2.4ms$ for $Er^{3+}$ ions in thin films, and calculated intrinsic quantum yields of $Er^{3+}$ ions are in the range of $0.025{\sim}0.03%$. As a result, all Er(III)-encapsulated dendrimer complexes exhibit the near IR emission with the following order: $Er^{3+}-[G3-AnD]_3$(terpy) > $Er^{3+}-[G3-AnS]_3$(terpy) ${\approx}$ $Er^{3+}-[G3-AnT]_3$(terpy), because $Er^{3+}-[G3-AnD]_3$(terpy) has a higher relatively spectral overlap J value and energy transfer efficiency. In addition, the lack of detectable phosphorescence and no significant spectral dependence of the ${\pi}$-extended anthracene moieties on the solvent polarity support energy transfer from their singlet state to the central $Er^{3+}$ ion taking place in $Er^{3+}-[G3-AnX]_3$(terpy).
Keywords
Er(III)-encapsulated complexes; ${\pi}$-extended anthracene ligand; near-IR emission; energy transfer efficiency;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Kawa and J. M. J. Fr$\acute{a}$ chet, Chem. Mater., 10, 286 (1998)   DOI   ScienceOn
2 A. Adronov and J. M. J. Fr$\acute{a}$chet, Chem. Commun., 1701 (2000)
3 A. Adronov, S. L. Gilat, J. M. J. Fréchet, K. Ohta, F. V. R. Neuwahl, and G. R. Fleming, J. Am. Chem. Soc., 122, 1175 (2000)   DOI   ScienceOn
4 V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero, and S. Serroni, Coord. Chem. Rev., 219, 545 (2001)   DOI   ScienceOn
5 N. S. Baek, Ph.D. thesis, Hannam University (2006)
6 J. B. Oh, K. L. Paik, J.-W. Ka, S.-G. Roh, M.-K. Nah, and H. K. Kim, Mat. Sci. Eng. C, 24, 257 (2004)   DOI   ScienceOn
7 S.-G. Roh, M. K. Nah, J. B. Oh, N. S. Baek, and H. K. Kim, Polyhedron, 24, 137 (2005)   DOI   ScienceOn
8 B. M. Krasovitskii and B. M. Bolotin, in Organic Luminescent Materials, VCH, Weinheim, 1988
9 G. A. Hebbink, L. Grave, L. A. Worldering, D. N. Reinhoudt, and F. C. J. M. van Veggel, J. Phys. Chem. A, 107, 2483 (2003)   DOI   ScienceOn
10 N. S. Baek, Y. H. Kim, and H. K. Kim, Bull. Korean Chem. Soc., 27, 1729 (2006)   DOI
11 M. Weber, J. Phys. Rev., 171, 283 (1968)   DOI
12 A. Polman, J. Appl. Phys., 82, 1 (1997)   DOI   ScienceOn
13 D. F. Eaton, Pure. Appl. Chem., 60, 1107 (1988)   DOI
14 H. K. Kim, S.-G. Roh, K.-S. Hong, J.-W. Ka, N. S. Baek, J. B. Oh, M. K. Nah, Y. H. Cha, and J. Ko, Macromol. Res., 11, 133 (2003) and see references cited therein   DOI   ScienceOn
15 Y.-J. Miao and G. C. Bazan, Macromolecules, 30, 7414 (1997)   DOI   ScienceOn
16 T. Oyamada, Y. Kawamura, T. Koyama, H. Sasabe, and C. Adachi, Adv. Mater., 16, 1082 (2004)   DOI   ScienceOn
17 C. J. Hawker and J. M. J. Fréchet, J. Am. Chem. Soc., 112, 7638 (1990)   DOI
18 Y. H. Kim, N. S. Baek, and H. K. Kim, Chem. Phys. Chem., 7, 213 (2006)   DOI   ScienceOn
19 L. H. Sloff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, J. Appl. Phys., 91, 3955 (2002)   DOI   ScienceOn
20 N. S. Baek, M. K. Nah, Y. H. Kim, S.-G. Roh, and H. K. Kim, Bull. Korean Chem. Soc., 25, 443 (2004)   DOI
21 J. R. Lakowicz, in Principles of Fluorescence Spectroscopy, 2nd edn., Kluwer Adademic/Plenum, New York, 1999
22 S. W. Magennis, A. J. Ferguson, T. Bryden, T. S. Jones, A. Beeby, and I. D. W. Samual, Synth. Met., 138, 463 (2003)   DOI   ScienceOn
23 M. J Cho, T. W. Lee, H. S. Kim, J.-I. Jin, D. H. Choi, Y. M. Kim, and B.-K. Ju, Macromol. Res., 15, 595 (2007)   DOI
24 H. K. Kim, J. B. Oh, N. S. Baek, S.-G. Roh, M. K. Nah, and Y. H. Kim, Bull. Korean Chem. Soc., 26, 201 (2005)   DOI
25 D.-L. Jiang and T. Aida, J. Am. Chem. Soc., 120, 10895 (1998)   DOI   ScienceOn
26 K. Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Application in Coordination, Organometallic and Bioinorganic Chemistry, 5th edn., John Wiley & Sons, New York, 1997
27 C. Pitois, A. Hult, and M. Lindgren, J. Lumin., 111, 265 (2005)
28 J. B. Oh, M.-K. Nah, Y. H. Kim, M. S. Kang, J.-W. Ka, and H. K. Kim, Adv. Funct. Mater., 17, 413 (2007)   DOI   ScienceOn
29 N. S. Baek, Y. H. Kim, S.-G. Roh, B. K. Kwak, and H. K. Kim, Adv. Funct. Mater., 16, 1873 (2006)
30 N. S. Baek, H. K. Kim, E. H. Chae, B. H. Kim, and J.-H. Lee, Macromolecules, 35, 9282 (2002)   DOI   ScienceOn
31 S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, J. Phys. Chem. A, 104, 5457 (2000)   DOI   ScienceOn
32 K. Kuriki, Y. Koike, and Y. Okamoto, Chem. Rev., 102, 2347 (2002)   DOI   ScienceOn
33 X. Zhou, D. S. Tyson, and F. N. Castellano, Angew. Chem. Int. Ed., 39, 4301 (2000)   DOI   ScienceOn
34 E. E. Nesterov, Z. Zhu, and T. M. Swager, J. Am. Chem. Soc., 127, 10083 (2005)   DOI   ScienceOn
35 J. B. Oh, Y. H. Kim, M.-K. Nah, and H. K. Kim, J. Lumin., 111, 255 (2005)   DOI   ScienceOn
36 S.-G. Roh, J. B. Oh, M. K. Nah, N. S. Baek, Y. Lee, and H. K. Kim, Bull. Korean Chem. Soc., 25, 1503 (2004)   DOI
37 T.-S. Kang, B. S. Harrison, T. J. Foley, A. S. Knefely, J. M. Boncella, J. R. Reynolds, and K. S. Schanze, Adv. Mater., 15, 1093 (2003)   DOI   ScienceOn
38 H. K. Kim, S.-G. Roh, J.-W. Ka, Y. H. Kim, M. K. Nah, J. B. Oh, and N. S. Baek, International PCT WO 092185 A1 (2004)
39 Y. W. Chung, B. I. Lee, and B. K. Cho, Macromol. Res., 16, 113 (2008)   DOI
40 E. P. Kirby and R. F. Steiner, J. Phys. Chem., 74, 4480 (1970)   DOI
41 V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, and F. Vögtle, J. Am. Chem. Soc., 124, 6461 (2002)   DOI   ScienceOn
42 V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, and M. Venturi, Acc. Chem. Res., 31, 26 (1998)   DOI   ScienceOn
43 M. Kawa and T. Takahagi, Chem. Mater., 16, 2282 (2004)   DOI   ScienceOn
44 Y. H. Kim, N. S. Baek, J. B. Oh, N. K. Nah, S.-G. Roh, B. J. Song, and H. K. Kim, Macromol. Res., 15, 272 (2007)   DOI