Browse > Article

Preparation and Cytotoxicity Comparison of Type A Gelatin Nanoparticles with Recombinant Human Gelatin Nanoparticles  

Won, Young-Wook (Department of Bioengineering, Information and Communication Building, Hanyang University)
Kim, Yong-Hee (Department of Bioengineering, Information and Communication Building, Hanyang University)
Publication Information
Macromolecular Research / v.17, no.7, 2009 , pp. 464-468 More about this Journal
Abstract
Gelatin nanoparticles derived from bovine or porcine have been developed as various types of drug delivery system, and they need to be cross-linked to maintain their physicochemical properties in aqueous environments. Although gelatin is a widely used material in pharmaceutical industries, the safety issue of animal-origin gelatins, such as transmissible mad cow disease and anaphylaxis, remains to be solved. The purpose of this study was to prepare type A gelatin (GA) nanoparticles by modified, two-step, desolvation method and compare the toxicity of the resulting GA nanoparticles with recombinant human gelatin (rHG) nanoparticles. The GA nanoparticles were characterized, and drug loading and release pattern were measured. FITC-BSA, a model protein, was efficiently loaded in the nanoparticles and then released in a biphasic and sustained release pattern without an initial burst. In particular, the cell viability of the GA nanoparticles was less than that of the rHG nanoparticles. This finding suggests that rHG nanoparticles should be considered as an alternative to animal-origin gelatin nanoparticles in order to minimize the safety problems.
Keywords
nanoparticles; gelatin; recombinant human gelatin; protein drug; drug delivery;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 C. A. Farrugia and M. J. Groves, J. Pharm. Pharmacol., 51, 643 (1999)   DOI
2 Y. W. Won and Y. H. Kim, J. Control. Release, 127, 154 (2008)   DOI   ScienceOn
3 A. K. Bajpai and J. Choubey, J. Appl. Polym. Sci., 101, 2320 (2006)   DOI   ScienceOn
4 N. Dinauer, S. Balthasat, C. Weber, J. Kreuter, K. Langer, and H. von Briesen, Biomaterials, 26, 5898 (2005)   DOI   ScienceOn
5 J. K. Vasir, M. K. Reddy, and V. D. Labhasetwar, Curr. Nanosci., 1, 47 (2005)   DOI   ScienceOn
6 J. J. Marty, R. C. Oppenheim, and P. Speiser, Pharm. Acta Helv., 53, 17 (1978)   PUBMED
7 K. Zwiorek, J. Kloeckner, E. Wagner, and C. Coester, J. Pharm. Pharm. Sci., 7, 22 (2005)
8 S. Young, M. Wong, Y. Tabata, and A. G. Mikos, J. Control. Release, 109, 256 (2005)   DOI   ScienceOn
9 http://www.fibrogen.com/programs/fg-5009/
10 C. S. Brazel and N. A. Peppas, Eur. J. Pharm. Biopharm., 49, 47 (2000)   DOI   ScienceOn
11 Y. Tabata and Y. Ikada, Adv. Drug. Deliver. Rev., 31, 287 (1998)   DOI   ScienceOn
12 C. Weber, C. Coester, J. Kreuter, and K. Langer, Int. J. Pharm., 194, 91 (2000)   DOI   ScienceOn
13 J. S. Lee, J. K. Kim, S. R. Park, and Y. H. Chang, Macromol. Res., 15, 205 (2007)   DOI
14 J. S. Park and Y. W. Cho, Macromol. Res., 15, 513 (2007)   DOI
15 Y. M. Jeon, T. H. Lim, S. H. Kim, J. G. Kim, and M. S. Gong, Macromol. Res., 15, 17 (2007)   DOI
16 H. C. Liang, W. H. Chang, K. J. Lin, and H. W. Sung, J. Biomed. Mater. Res., 65A, 271 (2003)   DOI   ScienceOn
17 H. W. Sung, D. M. Huang, W. H. Chang, R. N. Huang, and J. C. Hsu, J. Biomed. Mater. Res., 46, 520 (1999)   DOI   ScienceOn
18 S. Azarmi, Y. Huang, H. Chen, S. McQuarrie, D. Abrams, W. Roa, W. H. Finlay, G. G. Miller, and R. Lobenberg, J. Pharm. Pharmaceut. Sci., 9, 124 (2006)