Browse > Article

Ring-opening Polymerization of L-Lactide with Silica Supported Titanium Alkoxide Catalysts  

Kim, Eon-Ah (School of Chemical Engineering and Bioengineering, University of Ulsan)
Shin, Eun-Woo (School of Chemical Engineering and Bioengineering, University of Ulsan)
Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan)
Chung, Jin-Suk (School of Chemical Engineering and Bioengineering, University of Ulsan)
Hong, Youn-Jin (Department of Chemistry, Chungbuk National University)
Kim, Young-Jo (Department of Chemistry, Chungbuk National University)
Publication Information
Macromolecular Research / v.17, no.5, 2009 , pp. 346-351 More about this Journal
Abstract
$TiCl(O-i-Pr)_3/SiO_2$ and $Ti(O-i-Pr)_4/SiO_2$ were prepared by immobilizing chlorotitanium (IV) isopropoxide ($TiCl(O-i-Pr)_3$) and titanium (IV) isopropoxide ($Ti(O-i-Pr)_4$), to pretreated silica. The effect of the polymerization reaction conditions on the catalytic activity and characteristics of the resulting PLA were investigated. The catalytic conversion, molecular weight and polydispersity index (PDI) of the PLA produced on the titanium alkoxide supported catalysts increased proportionally with the reaction temperature. When the PLA was synthesized in bulk polymerization, the PLA produced with the supported catalysts had higher molecular weight than those with homogeneous catalysts. The melting temperature of the polymer produced with silica supported alkoxide catalysts was approximately $170-180^{\circ}C$.
Keywords
titanium alkoxide catalyst; silica support; polylactide; biodegradable polymer;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 D. J. Sawyer, Macromol. Symp., 201, 271 (2003)
2 B. Y. Shin, G. S. Jo, K. S. Kang, T. J. Lee, B. S. Kim, S. I. Lee, and J. S. Song, Macromol. Res., 15, 291 (2007)   DOI
3 J. Lunt, Polym. Degrad. Stabil., 59, 145 (1998)   DOI   ScienceOn
4 J. K. Lee, J. H. Ryou, W. K. Lee, C. Y. Park, S. B. Park, and S. K. Min, Macromol. Res., 11, 476 (2003)   DOI
5 M. Cheng, A. B. Attygalle, E. B. Lobkovsky, and G. W. Coates, J. Am. Chem. Soc., 121, 11583 (1999)   DOI   ScienceOn
6 A. D. Dove, V. C. Gibson, E. L. Marchall, H. S. Rzepa, A. J. P. White, and D. J. Willams, J. Am. Chem. Soc., 128, 9834 (2006)   DOI   ScienceOn
7 J. T. Richardson, Principles of catalyst development, Plenum Press, New York and London, 1989, pp 108-117
8 J. Ejfler, M. Kobyka, L. B. Jerzykiewicz, and P. Sobota, J. Mol. Catal. A-Chem., 257, 105 (2006)   DOI   ScienceOn
9 S. Jacobsen, H. G. Fritz, P. Dege, P. Dubiose, and R. Jrme, Ind. Crop. Prod., 11, 265 (2000)   DOI   ScienceOn
10 C. Chen, C. Huang, and B. Huang, Macromolecules, 37, 7968 (2004)   DOI   ScienceOn
11 H. T. Lee and D. S. Lee, Macromol. Res., 10, 359 (2002)   DOI
12 Y. Takashima, Y. Nakayama, K. Watanabe, T. Itono, N. Ueyama, A. Nakamura, H. Yasuda, and A. Harada, Macromolecules, 35, 7538 (2002)   DOI   ScienceOn
13 K. Y. Choi, J. S. Chung, B. G. Woo, and M. H. Hong, J. Appl. Polym. Sci., 88, 2132 (2003)   DOI   ScienceOn
14 A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 31, 2114 (1998)   DOI   ScienceOn
15 G. Montaudo, M. S. Montaudo, C. Puglisi, F. Samperi, N. Spassky, A. LeBorgne, and M. Wisniewski, Macromolecules, 29, 6461 (1996)   DOI   ScienceOn
16 R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1844 (2000)
17 S. I. Moon and Y. Kimura, Polym. Int., 52, 299 (2003)   DOI   ScienceOn
18 O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Chem. Rev., 104, 6147 (2004)   DOI   ScienceOn
19 Y. Kim, G. K. Jnaneshwara, and J. G. Verkade, Inorg. Chem., 42, 1437 (2003)   DOI   ScienceOn
20 J. M. Fraile, J. I. García, J. A. Mayoral, and E. Vispe, J. Catal., 233, 90 (2005)   DOI   ScienceOn
21 A. P. Dove, H. Li, R. C. Pratt, B. G. G. Lohmeijer, D. A. Culkin, R. H. Waymouth, and J. L. Hendrick, Chem. Commun., 2881 (2006)
22 A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276/277, 1 (2000)   DOI
23 D. K. Yoo, D. Kim, and D. S. Lee, Macromol. Res., 14, 510 (2006)   DOI
24 P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White, and D. J. Willams, J. Am. Chem. Soc., 126, 2688 (2004)   DOI   ScienceOn
25 A. D. Dove, V. C. Gibson, E. L. Marchall, H. S. Rzepa, A. J. P. White, and D. J. Willams, Chem. Commun., 283 (2001)
26 B. J. O’keefe, M. A. Hillmyer, and W. B. Tolman, J. Chem. Soc., Dalton Trans., 2215 (2001)
27 T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 124, 1316 (2002)   DOI   ScienceOn
28 S. Mun, J. Lee, S. H. Kim, Y. Hong, Y. Ko, Y. K. Shim, J. H. Lim, C. S. Hong, Y. Do, and Y. Kim, J. Organomet. Chem., 692, 3519 (2007)   DOI   ScienceOn