Browse > Article

Fabrication of Multicomponent Protein Microarrays with Microfluidic Devices of Poly(dimethylsiloxane)  

Jeon, Se-Hoon (Division of Energy Systems Research, Ajou University)
Kim, Ui-Seong (Division of Energy Systems Research, Ajou University)
Jeon, Won-Jin (Division of Energy Systems Research, Ajou University)
Shin, Chee-Burm (Division of Energy Systems Research, Ajou University)
Hong, Su-Rin (School of Chemical and Biological Engineering, Seoul National University)
Choi, In-Hee (School of Chemical and Biological Engineering, Seoul National University)
Lee, Su-Seung (School of Chemical and Biological Engineering, Seoul National University)
Yi, Jong-Heop (School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Macromolecular Research / v.17, no.3, 2009 , pp. 192-196 More about this Journal
Abstract
Recently, the multi-screening of target materials has been made possible by the development of the surface plasmon resonance (SPR) imaging method. To adapt this method to biochemical analysis, the multi-patterning technology of protein microarrays is required. Among the different methods of fabricating protein microarrays, the microfluidic platform was selected due to its various advantages over other techniques. Microfluidic devices were designed and fabricated with polydimethylsiloxane (PDMS) by the replica molding method. These devices were designed to operate using only capillary force, without the need for additional flow control equipment. With these devices, multiple protein-patterned sensor surfaces were made, to support the two-dimensional detection of various protein-protein interactions with SPR. The fabrication technique of protein microarrays can be applied not only to SPR imaging, but also to other biochemical analyses.
Keywords
protein microarray; microfluidic device; polydimethylsiloxane;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 E. P. Diamandis and T. K. Christopoulos, Newyork, NY, Academic Press, New York, NY, 2006
2 R. J. Green, R. A. Frazier, K. M. Shakeshe, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, Biomaterials, 21, 1823 (2000)   DOI   ScienceOn
3 P. Mitchell, Nat. Biotechnol., 19, 717 (2001)   DOI   PUBMED   ScienceOn
4 A. Gerlach, G. Knebel, A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, and Th. Schaller, Microsyst. Technol., 7, 265 (2002)   DOI   ScienceOn
5 B. H. Weigl and K. Hedine, American Clinical Laboratory, 21, 8 (2002)   PUBMED
6 D. R. Reyes, D. Iossifidis, P. Auroux, and A. Manz, Anal. Chem., 74, 2623 (2002)   DOI   ScienceOn
7 C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, and A. Errachid, Microelectronic Engineering, 78, 695 (2005)   DOI   ScienceOn
8 G. Urban, Ed., BioMEMS, Springer, Dordrecht, Netherlands, 2006
9 M. R. Cookson, F. M. Menzies, P. Manning, C. J. Eggett, D. A. Figlewicz, C. J. McNeil, and P. J. Shaw, Amyotroph Lateral Scler Other Motor Neuron Disord., 3, 75 (2002)
10 J. E. Anderson, L. L. Hansen, F. C. Moorenb, M. Post, H. Hugc, A. Zuse, and M. Los, Drug Resist. Update, 9, 198 (2006)   DOI   ScienceOn
11 P. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, Anal. Chem., 74, 2637 (2002)   DOI   ScienceOn
12 A. Al-Chalabi and P. N. Leigh, Curr. Opin. Neurol., 13, 397 (2000)   DOI   ScienceOn
13 Y. Iwasaki, T. Tobita, T. Horiuchi, and M. Seyama, NTT Technical Review, 4, 21 (2006)
14 E. Verpoorte, Electrophoresis, 23, 677 (2002)   DOI   PUBMED   ScienceOn
15 A. Al-Chalabi and P. N. Leigh, Curr. Opin. Neurol., 13, 397 (2000)   DOI   ScienceOn
16 W. Limbut, S. Loyprasert, C. Thammakhet, P. Thavarungkul, A. Tuantranont, P. Asawatreratanakul, C. Limsakul, B. Wongkittisuksa, and P. Kanatharana, Biosens. Bioelectron., 22, 3064 (2007)   DOI   ScienceOn
17 J. J. Goto, E. B. Gralla, J. S. Valentine, and D. E. Cabelli, J. Biol. Chem., 273, 30104 (1998)   DOI   PUBMED
18 N. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics, 2nd Ed., Artech House, Norwood, MA, 2006
19 P. J. Schmidt, C. Kunst, and V. C. Culotta, J. Biol. Chem., 275, 33771 (2000)   DOI   ScienceOn
20 V. Kanda, J. K. Kariuki, D. J. Harrison, and M. T. McDermott, Anal. Chem., 76, 7257 (2004)   DOI   ScienceOn
21 C. L. Shoesmith and M. J. Strong, Can. Fam. Physician, 52, 1563 (2006)
22 J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. V. Duyne, Nanomedicine, 1, 219 (2006)   DOI   ScienceOn
23 D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem., 70, 4974 (1998)   DOI   ScienceOn
24 A. R. Wheeler, S. Chah, R. J. Whelan, and R. N. Zare, Sensor Actuat. B-Chem., 98, 208 (2004)   DOI   ScienceOn
25 J. Berthier and P. Silberzan, Microfluidics for Biotechnology, Artech House, Boston, MA, 2006
26 C. Yi, C. Li, S. Ji, and M. Yang, Anal. Chim. Acta, 560, 1 (2006)   DOI   ScienceOn
27 J. Homola, S. S. Yee, and G. Gauglitz, Sensor Actuat. BChem., 54, 3 (1999)   DOI   ScienceOn
28 A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, P. C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, and G. Knebel, Chem. Eng. J., 101, 447 (2004)   DOI   ScienceOn
29 L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigoc, and H. Beckerc, Lab Chip, 2, 1 (2002)   PUBMED
30 S. Metz, R. Holzer, and P. Renaud, Lab Chip, 1, 29 (2001)   DOI   ScienceOn
31 D. D. Cunningham, Analy. Chim. Acta, 429, 1 (2001)   DOI   ScienceOn