Browse > Article

Effects of Silicone Surfactant on the Cell Size and Thermal Conductivity of Rigid Polyurethane Foams by Environmentally Friendly Blowing Agents  

Han, Mi-Sun (Department of Chemical and Biological Engineering, Korea University)
Choi, Seok-Jin (Department of Chemical and Biological Engineering, Korea University)
Kim, Ji-Mun (Department of Chemical and Biological Engineering, Korea University)
Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University)
Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University)
Lee, Heon-Sang (Tech. Center, LG Chemical Ltd.)
Sung, Joon-Yong (Department of Chemical Engineering, Pohang University of Science and Technology)
Publication Information
Macromolecular Research / v.17, no.1, 2009 , pp. 44-50 More about this Journal
Abstract
Rigid polyurethane foams (PUF)s were synthesized with environmentally friendly blowing agents such as a cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only for four different silicone surfactants having different silicone/polyether ratios. An attempt was made to reduce the thermal conductivities of the PUF samples by varying the concentration and the silicone/polyether ratio of the various silicone surfactants. The scanning electron microscopy (SEM) results indicated an optimum concentration of the silicone surfactant of about 1.5 to 2.5 phpp for various surfactants to reduce the cell size and lower the thermal conductivity. The silicone surfactant having a higher silicone/polymer ratio showed a smaller cell size and, therefore, demonstrated the lower thermal conductivity of the PUF samples. From the relation between the thermal conductivity and the cell size of the PUF samples, the smaller cell size improved the thermal insulation property of the rigid PUF for both the PUF samples blown by the cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only. If the blowing agent is fixed, then the cell size is an important factor to decrease the thermal conductivity of the PUF samples. These results indicated that rigid PUF samples having lower thermal conductivity can be obtained by choosing a silicone surfactant containing a higher silicone/polyether ratio, as well as an optimum content of the surfactant.
Keywords
rigid polyurethane foam; silicone surfactant; blowing agent; thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 K. S. Yang, X. Guo, W. Meng, J. Y. Hyun, I. K. Kang, and Y. I. Kim, Macromol. Res., 11, 488 (2003)   DOI   ScienceOn
2 J. K. Yun, H. J Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007)   DOI
3 A. V. Raghu, H. M. Jeong, J. H. Kim, Y. R. Lee, Y. B. Cho, and K. Sirsalmath, Macromol. Res., 16, 194 (2008)   DOI
4 W. J. Seo, Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee, and W. N. Kim, J. Appl. Polym. Sci., 101, 2879 (2006)   DOI   ScienceOn
5 Y. H. Kim, S. J. Choi, J. M. Kim, M. S. Han, W. N. Kim, and K. T. Bang, Macromol. Res., 15, 676 (2007)   DOI
6 M. Szycher, Szycher's Handbook of Polyurethanes, CRC Press LLC, Florida, 1999
7 W. J. Seo, H. C. Jung, J. C. Hyun, W. N. Kim, Y. B. Lee, K. H. Choe, and S. B. Kim, J. Appl. Polym. Sci., 90, 12 (2003)   DOI   ScienceOn
8 X. D. Zhang, C. W. Macosko, H. T. Davis, A. D. Nikolov, and D. T. Wasan, J. Colloid Interf. Sci., 215, 270 (1999)   DOI   ScienceOn
9 H. C. Jung, S. J. Kang, W. N. Kim, Y. B. Lee, K. H. Choe, S. H. Hong, and S. B. Kim, J. Appl. Polym. Sci., 78, 624 (2000)   DOI   ScienceOn
10 C. H. Sung, K. S. Lee, K. S. Lee, S. M. Oh, J. H. Kim, M. S. Kim, and H. M. Jeong, Macromol. Res., 15, 443 (2007)   DOI
11 Y. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, Adv. Mater., 17, 1999 (2005)   DOI   ScienceOn
12 B. K. Kim, J. W. Seo, and H. M. Jeong, Macromol. Res., 11, 198 (2003)   DOI
13 D. Weaire and S. Hutzler, The Physics of Foams, Oxford University Press, New York, 1999
14 G. Oertel, Polyurethane Handbook, Hanser Publishers, New York, 1993
15 S. M. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res., 13, 212 (2005)   DOI
16 W. J. Seo, Y. T. Sung, S. G. Kim, Y. B. Lee, K. H. Choe, S. H. Choe, S. B. Kim, and W. N. Kim, J. Appl. Polym. Sci., 102, 3764 (2006)   DOI   ScienceOn
17 X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46, 775 (2005)   DOI   ScienceOn
18 H. D. Park, J. W. Bae, K. D. Park, T. Ooya, N. Yui, J. H. Jang, D. K. Han, and J. W. Shin, Macromol. Res., 14, 73 (2006)   DOI
19 B. S. Min and S. W. Ko, Macromol. Res., 15, 225 (2007)   DOI
20 G. Caproli, R. Bernasconi, A. Hamilton, M. Van Liefferinge, S. Barettini, and A. Cappella, J. Cell. Plast., 35, 27 (1999)   DOI
21 N. Sarier and E. Onder, Thermochim. Acta, 454, 90 (2007)   DOI   ScienceOn
22 T. Widya and C. W. Macosko, J. Macromol. Sci. Part B: Polym. Phys., 44, 897 (2005)
23 S. Subramani, J. M. Lee, J. H. Kim, and I. W. Cheong, Macromol. Res., 13, 418 (2005)   DOI
24 M. H. Randal, Silicone Surfactants, Marcel Dekker, Inc., New York, 1999
25 D. I. Cha, K. W. Kim, G. H. Chu, H. Y. Kim, K. H. Lee, and N. Bhattarai, Macromol. Res., 14, 331 (2006)   DOI
26 U. S. Environmental Protection Agency (www.epa.gov), Federal Register, Vol. 65, No. 243, Rules and Regulations, page 78980, December 18, 2000
27 P. Ni, J. Li, J. Suo, and S. Li, J. Appl. Polym. Sci., 94, 534 (2004)   DOI   ScienceOn
28 J. Grimminger and K. Muha, J. Cell. Plast., 31, 48 (1995)   DOI
29 L. J. Gibson and M. F. Ashby, Cellular Solids, Cambridge University Press, New York, 1997
30 S. Chen, Z. Hua, Z. Fang, and G. Qi, Polymer, 45, 6519 (2004)   DOI   ScienceOn
31 K. C. Frisch, J. H. Saunders, and M. Dekker, Plastic Foams, New York, 1976
32 M. Rutnakornoituk, P. Ngamdee, and P. Phinyocheep, Polymer, 46, 9742 (2005)   DOI   ScienceOn
33 H. Yoshimura, Y. Tamano, and S. Okuzono, J. Cell. Plast., 32, 367 (1996)   DOI
34 D. Klempner and K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford University, New York, 1991