Browse > Article

Surface and Dielectric Properties of Oriental Lacquer Films Modified by UV-Curable Silicone Acrylate  

Hong, Jin-Who (Department of Polymer Science & Engineering, Chosun University)
Kim, Hyun-Kyoung (Department of Polymer Science & Engineering, Chosun University)
Publication Information
Macromolecular Research / v.14, no.6, 2006 , pp. 617-623 More about this Journal
Abstract
In order to achieve an oriental lacquer (OL) film with a thick consistency, UV-curable silicone acrylate (SA) was added to OL by a dual curing process. The addition of 5 wt% UV-curable SA to the OL fomulation enabled the preparation via a single drying step of a $77{\mu}m-thick$ film exhibiting excellent surface properties. FTIR-ATR was used to investigate the effect of UV-curable SA on the behavior of film formation during curing, and the relaxation behavior of the produced films was investigated by dielectric spectroscopy. Dielectric properties were measured in the frequency range $10^{-2}-10^5\;Hz$ at various temperatures between -100 and $200^{\circ}C$. The results demonstrated that OL modified by UV-curable SA has a higher glass transition temperature and stronger secondary relaxation at a lower temperature than the conventional OL system. The OL film modified with UV-curable SA was presumed to be harder at the surface and tougher than conventional OL film.
Keywords
oriental lacquer; silicone acrylate; dielectric properties; surface properties; UV-curable;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 M. Takada, R. Oshima, Y. Yamauchi, J. Kumanotani, and M. Seno, J. Org. Chem., 53, 3072 (1988)
2 E. Obataya , Y. Furuta, Y. Ohno, M. Norimoto, and B. Tomita, J. Appl. Polym. Sci., 83, 2288 (2002)   DOI   ScienceOn
3 H. W. Starkweather, Macromolecules, 14, 1277 (1981)   DOI
4 M. Younes, S. Wartewig, D. Lellinger, B. Strehmel, and V. Strehmel, Polymer, 35, 5269 (1994)   DOI   ScienceOn
5 R. H. M. Leur, Polymer, 35, 2691 (1994)   DOI   ScienceOn
6 I. Alig and G.. P. Johari, J. Polym. Sci. Polym. Phys. B, 31, 299 (1993)   DOI
7 J. F. Bristow and D. S. Kalika, Macromolecules, 27, 1808 (1994)   DOI   ScienceOn
8 R. D. Calleja, I. Devine, L. Gargallo, and D. Radic , Polymer, 35, 151 (1994)   DOI   ScienceOn
9 J. S. Hwang, J. Lee, and Y. H. Chang, Macromol. Res., 13, 409 (2005)   DOI
10 M. S. Graff and R. H. Boyd, Polymer, 35, 1797 (1994)   DOI   ScienceOn
11 G. Hoffmann and S. Poliszko, J. Appl. Polym. Sci., 59, 269 (1996)   DOI
12 G. Katana, E. W. Fischer, Th. Hack, V. Abetz, and F. Kremer, Macromolecules, 28, 2714 (1995)   DOI   ScienceOn
13 G. H. Hsiue, R. H. Lee, R. J. Jeng, and C. S. Chang, J. Polym. Sci. Part B, 34, 555 (1996)   DOI
14 W. H. Daly and S. Moulay, J. Polym. Sci. Polym. Symp., 74, 227 (1986)   DOI
15 R. Oshima, Y. Yamauchi , C. Watanabe, and J. Kumanotani, J. Org. Chem., 50, 613 (1985)
16 T. Nakamura, Biochem. Biophysics Res. Commun., 2, 111 (1960)   DOI
17 J. Kumanotani, J. Macromol. Chem., 179, 47 (1978)   DOI
18 B. A. Bedeker, Y. Tsujii, N. Ide, Y. Kita, T. Fukuda, and T. Miyamoto, Polymer, 36, 4735 (1995)   DOI
19 S. Y. Pyun and W. G. Kim, Macromol. Res., 11, 202 (2003)   DOI
20 D. M. Snyder, J. Chem. Edu., 66, 977 (1989)   DOI
21 T. Das, A. K. Banthia, and B. Adhikari, Macromol. Res., 14, 261 (2006)   과학기술학회마을   DOI
22 A. Livi, G.. Levita, and P. A. Rolla, J. Appl. Polm. Sci., 50, 1583 (1993)   DOI   ScienceOn
23 J. W. Hong, H. K. Kim, and J. O. Choi, J. Appl. Polym. Sci., 76, 1804 (2000)   DOI   ScienceOn