Browse > Article

Nafion-Sulfonated Poly(arylene ether sulfone) Composite Membrane for Direct Methanol Fuel Cell  

Choi Jisu (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Kim II Tae (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Kim Sung Chul (Center for Advanced Functional Polymers, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Hong Young Taik (Korea Research Institute of Chemical Technology)
Publication Information
Macromolecular Research / v.13, no.6, 2005 , pp. 514-520 More about this Journal
Abstract
Composite membranes of Nafion and sulfonated poly(arylene ether sulfone) were prepared. Sulfonated poly(arylene ether sulfone)s with different degrees of sulfonation were blended with Nafion to reduce the methanol crossover. The morphology, proton conductivity and methanol permeability of the resulting composite membranes were investigated by SEM, EDAX, AC impedance spectroscopy and permeability measuring instrument. The cross­sections of the composite membranes showed a phase separated morphology. The morphology and phase separation mechanism could be controlled by varying the blend ratio and the degree of sulfonation of poly(arylene ether sulfone). These complex morphologies can be applied for reducing methanol crossover. The methanol permeability and proton conductivity of the composite membranes were lower than those of Nafion 117 membrane since the development of an ionic pathway in the blend membrane was more difficult than that in Nafion itself.
Keywords
sulfonated poly(arylene ether sulfone); Nafion; blend; PEM; DMFC;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, 2000
2 B. Yang and Manthiram, Electrochemistry Communication, 6, 231 (2004)   DOI   ScienceOn
3 T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, Solid State Ionics, 106, 219 (1998)   DOI
4 X. Glipa, M. E. Haddad, D. J. Jones, and J. Roziere, Solid State Ionics, 97, 323 (1997)   DOI
5 Y. S. Kim, C. Dong, M. A. Hickner, T. E. Glass, V. Webb, and J. E. McGrath, Macromolecules, 36, 17 (2003)
6 K. Kordesch and G. Simader, Fuel Cells and Their Applications, VCH, 1996
7 M. P. Walsh, J. Power Sources, 29, 13 (1990)   DOI
8 A. S. Arico, P. Creti, P. L. Antonucci, and V. Antonucci, Electrochem. Solid. St., 1, 66 (1998)   DOI
9 F. Wang, M. Hickner, Q. Ji, W. Harrison, J. Mecham, T. A. Zawodzinski, and J. E. McGrath, Macromol. Symp., 175, 387 (2001)
10 J. A. Kerres, J. Membrane Sci., 185, 3 (2001)   DOI   ScienceOn
11 C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources, 103, 1 (2001)   DOI   ScienceOn
12 L. J. Hobson, H. Ozu, M. Yamaguchi, and S. Hayase, J. Electrochem. Soc., 148, A1185 (2001)   DOI   ScienceOn
13 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, J. Membrane Sci., 173, 17 (2000)   DOI   ScienceOn
14 J. A. Kerres, A. Ullrich, F. Meier, and T. Haring, Solid State Ionics, 125, 243 (1999)   DOI
15 B. Baradie, C. Poinsingon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise, and M. Vaujany, J. Power Sources, 74, 8 (1998)   DOI   ScienceOn
16 F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membrane Sci., 197, 231 (2002)   DOI   ScienceOn
17 K. Miyatake, H. Iyotani, K. Yamamoto, and E. Tsuchida, Macromolecules, 29, 6969 (1996)   DOI   ScienceOn
18 M. T. Bishop, F. E. Karasz, P. S. Russo, and K. H. Langley, Macromolecules, 18, 86 (1985)   DOI
19 L. Carrette and K. A. Friedrich, Chemphyschem, 1, 162 (2000)   DOI   ScienceOn