Browse > Article
http://dx.doi.org/10.5478/MSL.2022.13.4.125

Headspace GC-MS Analysis of Spring Blossom Fragrance at Chungnam National University Daedeok Campus  

Choi, Yeonwoo (Department of Chemistry, Chungnam National University)
Lee, Sanghyun (Department of Biology, Chungnam National University)
Kim, Young-Mi (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Nguyen, Huu-Quang (Department of Chemistry, Chungnam National University)
Kim, Jeongkwon (Department of Chemistry, Chungnam National University)
Lee, Jaebeom (Department of Chemistry, Chungnam National University)
Publication Information
Mass Spectrometry Letters / v.13, no.4, 2022 , pp. 125-132 More about this Journal
Abstract
There are many types of spring blossoms on the Daedeok campus of Chungnam National University (CNU) at the area of 1,600,000 square meters. As an assignment for the class of Analytical Chemistry I for second-year undergraduate students, 2021, flower petals collected from various floral groups (Korean azalea, Korean forsythia, Dilatata lilac, Lilytree, Lily magnolia, and Prunus yedoensis) were analyzed using headspace extraction coupled to gas chromatography-mass spectrometry (HS-GC-MS) to study the aromatic profiles and fragrance compounds of each sample group. Various types of compounds associated with the aroma profiles were detected, including saturated alcohols and aldehydes (ethanol, 1-hexanol, and nonanal), terpenes (limonene, pinene, and ocimene), and aromatic compounds (benzyl alcohol, benzaldehyde). The different contribution of these compounds for each floral type was visualized using statistical tools and classification models based on principal component analysis with high reliability (R2 = 0.824, Q2 = 0.616). These results showed that HS-GC-MS with statistical analysis is a powerful method to characterize the volatile aromatic profile of biological specimens.
Keywords
fragrance compound; headspace extraction; GCMS; spring blossoms; principal component analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Tomas-Barberan, F.A.; Robins, R.J. 1997. Phytochemistry of fruit and vegetables. In International Symposium of Phytochemistry of Fruit and Vegetables (1995: Murcia, Spain): Clarendon Press.
2 Schwab, W.; Davidovich?Rikanati, R.; Lewinsohn, E. The plant journal 2008, 54, 712. DOI: 10.1111/j.1365-313X.2008.03446.x   DOI
3 Seymour, G.B.; Taylor, J.E.; Tucker, G.A. Biochemistry of fruit ripening, Springer Science & Business Media. UK, 2012.
4 Buck, L.; Axel, R. Cell 1991, 65, 175. DOI: 10.1016/0092-8674(91)90418-X   DOI
5 Hyun, H.B.; Boo, K.H.; Kang, H.R.; Kim Cho, S. Journal of Applied Biological Chemistry 2015, 58, 175. http://dx.doi.org/10.3839/jabc.2015.028   DOI
6 Li, X.-l.; Sun, Z.-y.; Li, J.-y.; Fan, Z.-q.; Yin, H.-f. Food Science 2012, 2012, 16. https://www.spkx.net.cn/EN/Y2012/V33/I16/130
7 Oh, S.-M.; Chun, J.-H.; Lee, M.-K.; Kim, J.-B.; Kim, S.-J. Korean Journal of Agricultural Science 2017, 44, 104. DOI: 10.7744/kjoas.20170012   DOI
8 Yao, K.; Ma, H.; Huang, M.; Zhao, H.; Zhao, J.; Li, Y.; Dou, S.; Zhan, Y. ACS Appl. Nano Mater. 2019, 2, 5512. DOI: 10.1021/acsanm.9b01097.   DOI
9 Ito, T.; Kumazawa, K. Biosci., Biotechnol., Biochem. 1995, 59, 1944. DOI: 10.1271/bbb.59.1944.   DOI
10 Huang, X.-Q.; Li, R.; Fu, J.; Dudareva, N. Nature Communications 2022, 13, 1352. DOI: 10.1038/s41467-022-28978-2.   DOI
11 Yousif, S.I.; Bayram, M.; Kesen, S. Journal of Food Quality 2018, 2018, 8564086. DOI: 10.1155/2018/8564086.   DOI
12 Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.-P.; Zhang, Y.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Peng, Q.-H.; Lin, Z. Food Research International 2019, 121, 73. DOI: 10.1016/j.foodres.2019.03.009.   DOI
13 Wadood, S.A.; Boli, G.; Xiaowen, Z.; Raza, A.; Yimin, W. J. Mass Spectrom. 2020, 55, e4453. DOI: 10.1002/jms.4453.   DOI
14 Rajalahti, T.; Kvalheim, O.M. Int. J. Pharm. 2011, 417, 280. DOI: 10.1016/j.ijpharm.2011.02.019.   DOI
15 Nguyen, H.-Q.; Lee, D.; Kim, Y.; Bang, G.; Cho, K.; Lee, Y.-S.; Yeon, J.E.; Lubman, D.M.; Kim, J. Journal of Proteomics 2021, 245, 104278. DOI: 10.1016/j.jprot.2021.104278.   DOI
16 Abid, A.; Zhang, M.J.; Bagaria, V.K.; Zou, J. Nature Communications 2018, 9, 2134. DOI: 10.1038/s41467-018-04608-8.   DOI
17 Robards, K.; Robards, K.; Haddad, P.R.; Jackson, P.; Jackson, P.; Haddad, P.A. Principles and practice of modern chromatographic methods, Academic Press. US, 1994.
18 Maeztu, L.; Sanz, C.; Andueza, S.; Paz De Pena, M.; Bello, J.; Cid, C. J. Agric. Food Chem. 2001, 49, 5437. DOI: 10.1021/jf0107959.   DOI
19 Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Flavour Fragr. J. 2010, 25, 282-290. DOI: 10.1002/ffj.1984   DOI