Browse > Article
http://dx.doi.org/10.5478/MSL.2022.13.4.115

Combining the Power of Advanced Proteome-wide Sample Preparation Methods and Mass Spectrometry for defining the RNA-Protein Interactions  

Liu, Tong (Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences)
Xia, Chaoshuang (Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University)
Li, Xianyu (Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences)
Yang, Hongjun (Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences)
Publication Information
Mass Spectrometry Letters / v.13, no.4, 2022 , pp. 115-124 More about this Journal
Abstract
Emerging evidence has shown that RNA-binding proteins (RBPs) dynamically regulate all aspects of RNA in cells and involve in major biological processes of RNA, including splicing, modification, transport, transcription and degradation. RBPs, as powerful and versatile regulatory molecule, are essential to maintain cellular homeostasis. Perturbation of RNA-protein interactions and aberration of RBPs function is associated with diverse diseases, such as cancer, autoimmune disease, and neurological disorders. Therefore, it is crucial to systematically investigate the RNA-binding proteome for understanding interactions of RNA with proteins. Thanks to the development of the mass spectrometry, a variety of proteome-wide methods have been explored to define comprehensively RNA-protein interactions in recent years and thereby contributed to speeding up the study of RNA biology. In this review, we systematically described these methods and summarized the advantages and disadvantages of each method.
Keywords
proteomics; mass spectrometry; RNA-binding proteins; enrichment; RNA-protein interactions;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gebauer, F.; Schwarzl, T.; Valcarcel, J.; Hentze, M.W. Nature Reviews Genetics 2021, 22, 185. DOI: 10.1038/s41576-020-00302-y.   DOI
2 Bunnik, E.M.; Batugedara, G.; Saraf, A.; Prudhomme, J.; Florens, L.; Le Roch, K.G. Genome Biol. 2016, 17, 1. DOI: 10.1186/s13059-016-1014-0.   DOI
3 Trendel, J.; Schwarzl, T.; Horos, R.; Prakash, A.; Bateman, A.; Hentze, M.W.; Krijgsveld, J. Cell 2019, 176, 391. DOI: 10.1016/j.cell.2018.11.004.   DOI
4 Urdaneta, E.C.; Vieira-Vieira, C.H.; Hick, T.; Wessels, H.-H.; Figini, D.; Moschall, R.; Medenbach, J.; Ohler, U.; Granneman, S.; Selbach, M.; Beckmann, B.M. Nature Communications 2019, 10, 1. DOI: 10.1038/s41467-019-08942-3.   DOI
5 Smirnov, A.; Foerstner, K.U.; Holmqvist, E.; Otto, A.; Guenster, R.; Becher, D.; Reinhardt, R.; Vogel, J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 11591. DOI: 10.1073/pnas.1609981113.   DOI
6 Asencio, C.; Chatterjee, A.; Hentze, M.W. Life Science Alliance 2018, 1, e201800088. DOI: 10.26508/lsa.201800088.   DOI
7 Koo, K.; Foegeding, P.M.; Swaisgood, H.E. Biotechnol. Tech. 1998, 12, 549. DOI: 10.1023/a:1008859632378.   DOI
8 Shchepachev, V.; Bresson, S.; Spanos, C.; Petfalski, E.; Fischer, L.; Rappsilber, J.; Tollervey, D. Mol. Syst. Biol. 2019, 15, e8689. DOI: 10.15252/msb.20188689.   DOI
9 Yan, S.; Zhao, D.; Wang, C.; Wang, H.; Guan, X.; Gao, Y.; Zhang, X.; Zhang, N.; Chen, R. Anal. Chim. Acta 2021, 1168, 338609. DOI: 10.1016/j.aca.2021.338609.   DOI
10 Aw, J.G.A.; Shen, Y.; Wilm, A.; Sun, M.; Lim, X.N.; Boon, K.-L.; Tapsin, S.; Chan, Y.-S.; Tan, C.-P.; Sim, A.Y.L.; Zhang, T.; Susanto, T.T.; Fu, Z.; Nagarajan, N.; Wan, Y. Mol. Cell 2016, 62, 603. DOI: 10.1016/j.molcel.2016.04.028.   DOI
11 Jankowsky, E.; Harris, M.E. Nature Reviews Molecular Cell Biology 2015, 16, 533. DOI: 10.1038/nrm4032.   DOI
12 Nair, L.; Chung, H.; Basu, U. Nature Reviews Molecular Cell Biology 2020, 21, 123. DOI: 10.1038/s41580-019-0209-0.   DOI
13 Dreyfuss, G.; Kim, V.N.; Kataoka, N. Nature Reviews Molecular Cell Biology 2002, 3, 195. DOI: 10.1038/nrm760.   DOI
14 Sonenberg, N.; Hinnebusch, A.G. Cell 2009, 136, 731. DOI: 10.1016/j.cell.2009.01.042.   DOI
15 Burger, K.; Muehl, B.; Kellner, M.; Rohrmoser, M.; Gruber-Eber, A.; Windhager, L.; Friedel, C.C.; Doelken, L.; Eick, D. RNA Biol. 2013, 10, 1623. DOI: 10.4161/rna.26214.   DOI
16 Gerstberger, S.; Hafner, M.; Tuschl, T. Nature Reviews Genetics 2014, 15, 829. DOI: 10.1038/nrg3813.   DOI
17 Koehler, A.; Hurt, E. Nature Reviews Molecular Cell Biology 2007, 8, 761. DOI: 10.1038/nrm2255.   DOI
18 Chen, R.; Liu, Y.; Zhuang, H.; Yang, B.; Hei, K.; Xiao, M.; Hou, C.; Gao, H.; Zhang, X.; Jia, C.; Li, L.; Li, Y.; Zhang, N. Nucleic Acids Res. 2017, 45, 9947. DOI: 10.1093/nar/gkx600.   DOI
19 Cooper, T.A.; Wan, L.; Dreyfuss, G. Cell 2009, 136, 777. DOI: 10.1016/j.cell.2009.02.011.   DOI
20 Huang, A.; Zheng, H.; Wu, Z.; Chen, M.; Huang, Y. Theranostics 2020, 10, 3503. DOI: 10.7150/thno.42174.   DOI
21 Liao, Y.; Castello, A.; Fischer, B.; Leicht, S.; Foeehr, S.; Frese, C.K.; Ragan, C.; Kurscheid, S.; Pagler, E.; Yang, H.; Krijgsveld, J.; Hentze, M.W.; Preiss, T. Cell Reports 2016, 16, 1456. DOI: 10.1016/j.celrep.2016.06.084.   DOI
22 Jazurek, M.; Ciesiolka, A.; Starega-Roslan, J.; Bilinska, K.; Krzyzosiak, W.J. Nucleic Acids Res. 2016, 44, 9050. DOI: 10.1093/nar/gkw803.   DOI
23 Koenig, J.; Zarnack, K.; Luscombe, N.M.; Ule, J. Nature Reviews Genetics 2012, 13, 77. DOI: 10.1038/nrg3141.   DOI
24 Pereira, B.; Billaud, M.; Almeida, R. Trends In Cancer 2017, 3, 506. DOI: 10.1016/j.trecan.2017.05.003.   DOI
25 Castello, A.; Fischer, B.; Hentze, M.W.; Preiss, T. Trends Genet. 2013, 29, 318. DOI: 10.1016/j.tig.2013.01.004.   DOI
26 McHugh, C.A.; Russell, P.; Guttman, M. Genome Biol. 2014, 15, 203. DOI: 10.1186/gb4152.   DOI
27 Beckmann, B.M.; Horos, R.; Fischer, B.; Castello, A.; Eichelbaum, K.; Alleaume, A.-M.; Schwarzl, T.; Curk, T.; Foehr, S.; Huber, W.; Krijgsveld, J.; Hentze, M.W. Nature Communications 2015, 6, 1. DOI: 10.1038/ncomms10127.   DOI
28 Nechay, M.; Kleiner, R.E. Curr. Opin. Chem. Biol. 2020, 54, 37. DOI: 10.1016/j.cbpa.2019.11.002.   DOI
29 Castello, A.; Fischer, B.; Eichelbaum, K.; Horos, R.; Beckmann, B.M.; Strein, C.; Davey, N.E.; Humphreys, D.T.; Preiss, T.; Steinmetz, L.M.; Krijgsveld, J.; Hentze, M.W. Cell 2012, 149, 1393. DOI: 10.1016/j.cell.2012.04.031.   DOI
30 Baltz, A.G.; Munschauer, M.; Schwanhaeusser, B.; Vasile, A.; Murakawa, Y.; Schueler, M.; Youngs, N.; PenfoldBrown, D.; Drew, K.; Milek, M.; Wyler, E.; Bonneau, R.; Selbach, M.; Dieterich, C.; Landthaler, M. Mol. Cell 2012, 46, 674. DOI: 10.1016/j.molcel.2012.05.021.   DOI
31 Conrad, T.; Albrecht, A.-S.; Costa, V.R.d.M.; Sauer, S.; Meierhofer, D.; Orom, U.A. Nature Communications 2016, 7, 1. DOI: 10.1038/ncomms11212.   DOI
32 Kramer, K.; Sachsenberg, T.; Beckmann, B.M.; Qamar, S.; Boon, K.-L.; Hentze, M.W.; Kohlbacher, O.; Urlaub, H. Nat. Methods 2014, 11, 1064. DOI: 10.1038/nmeth.3092.   DOI
33 Kwon, S.C.; Yi, H.; Eichelbaum, K.; Foehr, S.; Fischer, B.; You, K.T.; Castello, A.; Krijgsveld, J.; Hentze, M.W.; Kim, V.N. Nat. Struct. Mol. Biol. 2013, 20, 1122. DOI: 10.1038/nsmb.2638.   DOI
34 Mitchell, S.F.; Jain, S.; She, M.; Parker, R. Nat. Struct. Mol. Biol. 2013, 20, 127. DOI: 10.1038/nsmb.2468.   DOI
35 Wessels, H.-H.; Imami, K.; Baltz, A.G.; Kolinski, M.; Beldovskaya, A.; Selbach, M.; Small, S.; Ohler, U.; Landthaler, M. Genome Res. 2016, 26, 1000. DOI: 10.1101/gr.200386.115.   DOI
36 Perez-Perri, J.I.; Rogell, B.; Schwarzl, T.; Stein, F.; Zhou, Y.; Rettel, M.; Brosig, A.; Hentze, M.W. Nature Communications 2018, 9, 1. DOI: 10.1038/s41467-018-06557-8.   DOI
37 Despic, V.; Dejung, M.; Gu, M.; Krishnan, J.; Zhang, J.; Herzel, L.; Straube, K.; Gerstein, M.B.; Butter, F.; Neugebauer, K.M. Genome Res. 2017, 27, 1184. DOI: 10.1101/gr.215954.116.   DOI
38 Matia-Gonzalez, A.M.; Laing, E.E.; Gerber, A.P. Nat. Struct. Mol. Biol. 2015, 22, 1027. DOI: 10.1038/nsmb.3128.   DOI
39 Nandan, D.; Thomas, S.A.; Nguyen, A.; Moon, K.-M.; Foster, L.J.; Reiner, N.E. PLoS One 2017, 12, e0170068. DOI: 10.1371/journal.pone.0170068.   DOI
40 Huang, R.; Han, M.; Meng, L.; Chen, X. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E3879. DOI: 10.1073/pnas.1718406115.   DOI
41 Ramanathan, M.; Porter, D.F.; Khavari, P.A. Nat. Methods 2019, 16, 225. DOI: 10.1038/s41592-019-0330-1.   DOI
42 Sysoev, V.O.; Fischer, B.; Frese, C.K.; Gupta, I.; Krijgsveld, J.; Hentze, M.W.; Castello, A.; Ephrussi, A. Nature Communications 2016, 7, 1. DOI: 10.1038/ncomms12128.   DOI
43 Lueong, S.; Merce, C.; Fischer, B.; Hoheisel, J.D.; Erben, E.D. Mol. Microbiol. 2016, 100, 457. DOI: 10.1111/mmi.13328.   DOI
44 Reichel, M.; Liao, Y.; Rettel, M.; Ragan, C.; Evers, M.; Alleaume, A.-M.; Horos, R.; Hentze, M.W.; Preiss, T.; Millar, A.A. Plant Cell 2016, 28, 2435. DOI: 10.1105/tpc.16.00562.   DOI
45 Marondedze, C.; Thomas, L.; Serrano, N.L.; Lilley, K.S.; Gehring, C. Sci. Rep. 2016, 6, 1. DOI: 10.1038/srep29766.   DOI
46 Hentze, M.W.; Castello, A.; Schwarzl, T.; Preiss, T. Nature Reviews Molecular Cell Biology 2018, 19, 327. DOI: 10.1038/nrm.2017.130.   DOI
47 Qin, W.; Myers, S.A.; Carey, D.K.; Carr, S.A.; Ting, A.Y. Nature Communications 2021, 12, 1. DOI: 10.1038/s41467-021-25259-2.   DOI
48 Liepelt, A.; Naarmann-de Vries, I.S.; Simons, N.; Eichelbaum, K.; Foehr, S.; Archer, S.K.; Castello, A.; Usadel, B.; Krijgsveld, J.; Preiss, T.; Marx, G.; Hentze, M.W.; Ostareck, D.H.; Ostareck-Lederer, A. Mol. Cell. Proteomics 2016, 15, 2699. DOI: 10.1074/mcp.M115.056564.   DOI
49 Kamel, W.; Noerenberg, M.; Cerikan, B.; Chen, H.; Ja, A.I.; Kammoun, M.; Lee, J.Y.; Shuai, N.; Garcia-Moreno, M.; Andrejeva, A.; Deery, M.J.; Johnson, N.; Neufeldt, C.J.; Cortese, M.; Knight, M.L.; Lilley, K.S.; Martinez, J.; Davis, I.; Bartenschlager, R.; Mohammed, S.; Castello, A. Mol. Cell 2021, 81, 2851. DOI: 10.1016/j.molcel.2021.05.023.   DOI
50 Castello, A.; Frese, C.K.; Fischer, B.; Jarvelin, A.I.; Horos, R.; Alleaume, A.-M.; Foehr, S.; Curk, T.; Krijgsveld, J.; Hentze, M.W. Nat. Protoc. 2017, 12, 2447. DOI: 10.1038/nprot.2017.106.   DOI
51 Harris, M.E.; Christian, E.L. 2009. RNA Crosslinking methods. In Methods In Enzymology, Vol 468: Biophysical, Chemical, And Functional Probes Of Rna Structure, Interactions And Folding, Pt A. D. Herschalag, editor. 127.
52 Zhang, Z.; Liu, T.; Dong, H.; Li, J.; Sun, H.; Qian, X.; Qin, W. Nucleic Acids Res. 2021, 49, e65. DOI: 10.1093/nar/gkab156.   DOI
53 Zhang, Y.; Chan, P.P.Y.; Herr, A.E. Angewandte ChemieInternational Edition 2018, 57, 2357. DOI: 10.1002/anie.201711441.   DOI
54 Qin, W.; Cho, K.F.; Cavanagh, P.E.; Ting, A.Y. Nat. Methods 2021, 18, 133. DOI: 10.1038/s41592-020-01010-5.   DOI
55 Luo, H.; Tang, W.; Liu, H.; Zeng, X.; Ngai, W.S.C.; Gao, R.; Li, H.; Li, R.; Zheng, H.; Guo, J.; Qin, F.; Wang, G.; Li, K.; Fan, X.; Zou, P.; Chen, P.R. Angewandte ChemieInternational Edition 2022, 61, e202202008. DOI: 10.1002/anie.202202008.   DOI
56 Castello, A.; Fischer, B.; Frese, C.K.; Horos, R.; Alleaume, A.-M.; Foehr, S.; Curk, T.; Krijgsveld, J.; Hentze, M.W. Mol. Cell 2016, 63, 696. DOI: 10.1016/j.molcel.2016.06.029.   DOI
57 Garcia-Moreno, M.; Noerenberg, M.; Ni, S.; Jarvelin, A.I.; Gonzalez-Almela, E.; Lenz, C.E.; Bach-Pages, M.; Cox, V.; Avolio, R.; Davis, T.; Hester, S.; Sohier, T.J.M.; Li, B.; Heikel, G.; Michlewski, G.; Sanz, M.A.; Carrasco, L.; Ricci, E.P.; Pelechano, V.; Davis, I.; Fischer, B.; Mohammed, S.; Castello, A. Mol. Cell 2019, 74, 196. DOI: 10.1016/j.molcel.2019.01.017.   DOI
58 Benhalevy, D.; Anastasakis, D.G.; Hafner, M. Nat. Methods 2018, 15, 1074. DOI: 10.1038/s41592-018-0220-y.   DOI
59 Sun, W.; Wang, N.; Liu, H.; Yu, B.; Jin, L.; Ren, X.; Shen, Y.; Wang, L. Nat. Chem. 2022. DOI: 10.1038/s41557-022-01038-4.   DOI
60 Smith, T.; Villanueva, E.; Queiroz, R.M.L.; Dawson, C.S.; Elzek, M.; Urdaneta, E.C.; Willis, A.E.; Beckmann, B.M.; Krijgsveld, J.; Lilley, K.S. Curr. Opin. Chem. Biol. 2020, 54, 70. DOI: 10.1016/j.cbpa.2020.01.009.   DOI
61 Bao, X.; Guo, X.; Yin, M.; Tariq, M.; Lai, Y.; Kanwal, S.; Zhou, J.; Li, N.; Lv, Y.; Pulido-Quetglas, C.; Wang, X.; Ji, L.; Khan, M.J.; Zhu, X.; Luo, Z.; Shao, C.; Lim, D.-H.; Liu, X.; Li, N.; Wang, W.; He, M.; Liu, Y.-L.; Ward, C.; Wang, T.; Zhang, G.; Wang, D.; Yang, J.; Chen, Y.; Zhang, C.; Jauch, R.; Yang, Y.-G.; Wang, Y.; Qin, B.; Anko, M.-L.; Hutchins, A.P.; Sun, H.; Wang, H.; Fu, X.-D.; Zhang, B.; Esteban, M.A. Nat. Methods 2018, 15, 213. DOI: 10.1038/nmeth.4595.   DOI
62 Tani, H.; Akimitsu, N. RNA Biol. 2012, 9, 1233. DOI: 10.4161/rna.22036.   DOI
63 Chomczynski, P.; Sacchi, N. Nat. Protoc. 2006, 1, 581. DOI: 10.1038/nprot.2006.83.   DOI
64 Queiroz, R.M.L.; Smith, T.; Villanueva, E.; Marti-Solano, M.; Monti, M.; Pizzinga, M.; Mirea, D.-M.; Ramakrishna, M.; Harvey, R.F.; Dezi, V.; Thomas, G.H.; Willis, A.E.; Lilley, K.S. Nat. Biotechnol. 2019, 37, 169. DOI: 10.1038/s41587-018-0001-2.   DOI