Browse > Article
http://dx.doi.org/10.5478/MSL.2020.11.4.95

A Low-Cost Open-Source Air Sampler for the Sorbent Tube Sampling for TD-GC/MS Analysis  

Jang, Hwa-yong (Department of Chemistry, Sogang University)
Oh, Han Bin (Department of Chemistry, Sogang University)
Publication Information
Mass Spectrometry Letters / v.11, no.4, 2020 , pp. 95-102 More about this Journal
Abstract
In this study, we provide full descriptions of how to make a low-cost and completely open-source laboratory-made air sampler that will be used for sample adsorption for thermal desorption-gas chromatography mass spectrometry (TD-GC/MS) analysis. It is well known that harmful gases cause bad effects on human bodies, so it is necessary to identify the types and amounts of gases in industrial sites. One of the most commonly used methods for gas sampling is to utilize a sorbent tube using an air sampler. Commercially available air samplers are expensive, typically priced between $1,000 and $2,000, and their design often cannot be modified to fit the experiment. To address these shortcomings, we have developed a do-it-yourself (DIY) air sampler that is not only cheap enough, but also completely open-source. Furthermore, the performance of the fabricated air sampler was validated in conjunction with TD-GC/MS for the analysis of volatile compounds.
Keywords
air sampler; do-it-yourself (DIY); open-source; CNC machining; TD-GC/MS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Jung, S.; Woo, J.; Kang, C. Saf. Sci. 2020, 124, 104580, DOI: 10.1016/j.ssci.2019.104580.   DOI
2 Wang, B.; Wu, C.; Reniers, G.; Huang, L.; Kang, L.; Zhang, L. Sci. Total Environ. 2018, 643, 1, DOI: 10.1016/j.scitotenv.2018.06.174.   DOI
3 Woolfenden, E. J. Air Waste Manag. Assoc. 1997, 47, 20, DOI: 10.1080/10473289.1997.10464411.   DOI
4 Kim, K. H.; Kim, Y. H.; Brown, R. J. C. Anal. Bioanal. Chem. 2013, 405, 8397, DOI: 10.1007/s00216-013-7263-9.   DOI
5 Kim, K. H.; Lee, M. H.; Szulejko, J. E. Anal. Chim. Acta. 2014, 835, 46, DOI: 10.1016/j.aca.2014.05.042.   DOI
6 Peng, C. Y.; Batterman, S. J. Environ. Monit. 2000, 2, 313, DOI: 10.1039/B003385P.   DOI
7 Son, M.; Yang, J.; Cho, S.; Lee, J.; Oh, H. B. Bull. Korean Chem. Soc. 2018, 39, 1368, DOI: 10.1002/bkcs.11607.   DOI
8 Duan, W.; Chen, G.; Ye, Q.; Chen, Q. J. Hazard. Mater. 2011, 186, 1489, DOI: 10.1016/j.jhazmat.2010.12.029.   DOI
9 Santella, N.; Steinberg, L.J.; Sengul, H. Risk Anal. 2010, 30, 635, 10.1111/j.1539-6924.2010.01390.x.   DOI
10 Cha, E.; Jeong, E. S.; Han, S. B.; Cha, S.; Son, J.; Kim, S.; Oh, H. B.; Lee, J. Anal. Chem. 2018, 90, 4203, DOI: 10.1021/acs.analchem.8b00401.   DOI
11 Lee, J. U.; Oh, H. B. Anal. Sci. Technol. 2017, 30, 167, DOI: 10.5806/AST.2017.30.4.167.   DOI
12 Cabuz, C.; Herb, W. R.; Cabuz, E. I.; Son, T. L. IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2001, 519.
13 Misra, V.; Pandey, S. D. Environ. Int. 2005, 31, 417, 10.1016/j.envint.2004.08.005.   DOI
14 Wang, J.; Liu, Y.; Shen, Y.; Chen, S.; Yang, Z. Micromachines 2016, 7, 219, DOI: 10.3390/mi7120219.   DOI
15 Yang, X.; Grosjean, C.; Tai, Y. C.; Ho, C. M. Sens. Actuators A Phys. 1998, 64, 101, DOI: 10.1016/S0924-4247(97)01660-9.   DOI