Browse > Article
http://dx.doi.org/10.5478/MSL.2020.11.3.52

Global Histidine Phosphoproteomics in Human Prostate Cancer Cells  

Gao, Yan (BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Kim, Doeun (BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Sung, Eunji (BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Tan, Minjia (Shanghai Institute of Materia Medica, Chinese Academy of Sciences)
Kwon, Tae Gyun (Department of Urology, School of Medicine, Kyungpook National University)
Lee, Jun Nyung (Department of Urology, School of Medicine, Kyungpook National University)
Lee, Sangkyu (BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Publication Information
Mass Spectrometry Letters / v.11, no.3, 2020 , pp. 52-58 More about this Journal
Abstract
Histidine phosphorylation (pHis) is increasingly recognized as an important post translational modification (PTM) in regulating cellular functions in eukaryotes. In order to clarify the role of pHis in mammalian cell signaling system, a global phosphorylation study was performed in human prostate cancer cells, PC-3M, using a TiO2 affinity chromatography. A total number of 307 pHis sites were identified on the 268 proteins among total identified 9,924 phosphorylation sites on 3,316 proteins. In addition, 22 pHis proteins were classified in enzyme category. This report provides the first database for the study of pHis in prostate cancer cells.
Keywords
Histidine phosphorylation; $TiO_2$-affinity chromatography; Mammalian cells; LC-MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boyer, P. D.; Deluca, M.; Ebner, K. E.; Hultquist, D. E.; Peter, J. B. J. Biol. Chem. 1962, 237, PC3306.   DOI
2 Hunter, T. Cell 1995, 80, 225, DOI: 10.1016/0092-8674(95)90405-0.   DOI
3 Kee, J. M.; Muir, T. W. ACS Chem. Biol. 2012, 7, 44, DOI: 10.1021/cb200445w.   DOI
4 Kee, J. M.; Villani, B.; Carpenter, L. R.; Muir, T. W. J. Am. Chem. Soc. 2010, 132, 14327, DOI: 10.1021/ja104393t.   DOI
5 Kee, J. M.; Oslund, R. C.; Perlman, D. H.; Muir, T. W. Nat. Chem. Biol. 2013, 9, 416, DOI: 10.1038/nchembio.1259.   DOI
6 Fuhs, S. R.; Meisenhelder, J.; Aslanian, A.; Ma, L.; Zagorska, A.; Stankova, M.; Binnie, A.; Al-Obeidi, F.; Mauger, J.; Lemke, G.; Yates, J. R.; Hunter, T. Cell 2015, 162, 198, DOI: 10.1016/j.cell.2015.05.046.   DOI
7 Potel, C. M.; Lin, M. H.; Heck, A. J. R.; Lemeer, S. Nat. Methods 2018, 15, 187, DOI: 10.1038/nmeth.4580.   DOI
8 Gao, Y.; Lee, H.; Kwon, O. K.; Cheng, Z.; Tan, M.; Kim, K. T.; Lee, S. Proteomics 2019, 19, e1800471, DOI: 10.1002/pmic.201800471.
9 Hardman, G.; Eyers, C. E. Methods Mol. Biol. 2020, 2077, 225, DOI: 10.1007/978-1-4939-9884-5_15.   DOI
10 Fuhs, S. R.; Hunter, T. Curr. Opin. Cell Biol. 2017, 45, 8, DOI: 10.1016/j.ceb.2016.12.010.   DOI
11 Chen, Y.; Kwon, S. W.; Kim, S. C.; Zhao, Y. J. Proteome Res. 2005, 4, 998, DOI: 10.1021/pr049754t.   DOI
12 Beausoleil, S. A.; Jedrychowski, M.; Schwartz, D.; Elias, J. E.; Villen, J.; Li, J.; Cohn, M. A.; Cantley, L. C.; Gygi, S. P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12130, DOI: 10.1073/pnas.0404720101.   DOI
13 Lai, S. J.; Tu, I. F.; Wu, W. L.; Yang, J. T.; Luk, L. Y. P.; Lai, M. C.; Tsai, Y. H.; Wu, S. H. BMC Microbiol. 2017, 17, 123, DOI: 10.1186/s12866-017-1034-2.   DOI