Browse > Article
http://dx.doi.org/10.5478/MSL.2018.9.2.51

Loss of Potential Biomarker Proteins Associated with Abundant Proteins during Abundant Protein Removal in Sample Pretreatment  

Shin, Jihoon (Department of Chemistry, Wonkwang University)
Lee, Jinwook (Department of Chemistry, Wonkwang University)
Cho, Wonryeon (Department of Chemistry, Wonkwang University)
Publication Information
Mass Spectrometry Letters / v.9, no.2, 2018 , pp. 51-55 More about this Journal
Abstract
Capture of non-glycoproteins during lectin affinity chromatography is frequently observed, although it would seem to be anomalous. In actuality, lectin affinity chromatography works at post-translational modification (PTM) sites on a glycoprotein which is not involved in protein-protein interactions (PPIs). In this study, serial affinity column set (SACS) using lectins followed by proteomics methods was used to identify PPI mechanisms of captured proteins in human plasma. MetaCore, STRING, Ingenuity Pathway Analysis (IPA), and IntAct were individually used to elucidate the interactions of the identified abundant proteins and to obtain the corresponding interaction maps. The abundant non-glycoproteins were captured with the binding to the selected glycoproteins. Therefore, depletion process in sample pretreatment for abundant protein removal should be considered with more caution because it may lose precious disease-related low abundant proteins through PPIs of the removed abundant proteins in human plasma during the depletion process in biomarker discovery. Glycoproteins bearing specific glycans are frequently associated with cancer and can be specifically isolated by lectin affinity chromatography. Therefore, SACS using Lycopersicon esculentum lectin (LEL) can also be used to study disease interactomes.
Keywords
Serial affinity column set (SACS); Lectin; Depletion; Abundant protein removal; Protein-protein interactions (PPIs); Biomarker;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gadjeva, M. The Complement System: Methods and Protocols, Humana Press: Totowa, 2014.
2 Gu, H.; Ren, J. M.; Jia, X.; Levy, T.; Rikova, K.; Yang, V.; Lee, K. A.; Stokes, M. P.; Silva, J. C. Mol. Cell. Proteomics 2016, 15, 692.   DOI
3 Yang, N.; Feng, S.; Shedden, K.; Xie, X.; Liu, Y.; Rosser, C. J.; Lubman, D. M.; Goodison, S. Clin. Cancer Res. 2011, 17, 3349.   DOI
4 Jung, K.; Cho, W. Anal. Chem. 2013, 85, 7125.   DOI
5 Cho, W. Anal. Chem. 2015, 87, 9612.   DOI
6 Gbormittah, F. O.; Hincapie, M.; Hancock, W. S. Bioanalysis 2014, 6, 2537.   DOI
7 Kohler, J. J.; Patrie, S. M. Mass Spectrometry of Glycoproteins: Methods and Protocols, Humana Press: Totowa, 2013.
8 Kim, B.; Araujo, R.; Howard, M.; Magni, R.; Liotta, L. A.; Luchini, A. Expert Rev. Proteomics 2018, 15, 353.   DOI
9 Deutsch, O.; Krief, G.; Konttinen, Y. T.; Zaks, B.; Wong, D. T.; Aframian, D. J.; Palmon, A. Rheumatology 2015, 54, 884.   DOI
10 Azarkan, M.; Huet, J.; Baeyens-Volant, D.; Looze, Y.; Vandenbussche, G. J. Chromatogr. B 2007, 849, 81.   DOI
11 Buyuktiryaki, S.; Uzun, L.; Denizli, A.; Say, R.; Ersoz, A. Sep. Sci. Technol. 2016, 51, 2080.   DOI
12 Balmana, M.; Sarrats, A.; Llop, E.; Barrabes, S.; Saldova, R.; Ferri, M. J.; Figueras, J.; Fort, E.; de Llorens, R.; Rudd, P. M.; Peracaula, R. Clin. Chim. Acta 2015, 442, 56.   DOI
13 Mortezai, N.; Harder, S.; Schnabel, C.; Moors, E.; Gauly, M.; Schluter, H.; Wagener, C.; Buck, F. J. Proteome Res. 2010, 9, 6126.   DOI
14 Kang, U. -B.; Ahn, Y.; Lee, J. W.; Kim, Y. -H.; Kim, J.; Yu, M. -H.; Noh, D. -Y.; Lee, C. BMC Cancer 2010, 10, 114.   DOI
15 Jung, K.; Cho, W.; Regnier, F. E. J. Proteome Res. 2009, 8, 643.   DOI
16 Shin, J.; Cho, W. Mass Spectrom. Lett. 2016, 7, 74.   DOI
17 Larkin, S. E. T.; Johnston, H. E.; Jackson, T. R.; Jamieson, D. G.; Roumeliotis, T. I.; Mockridge, C. I.; Michael, A.; Manousopoulou, A.; Papachristou, E. K.; Brown, M. D.; Clarke, N. W.; Pandha, H.; Aukim-Hastie, C. L.; Cragg, M. S.; Garbis, S. D.; Townsend, P. A. Br. J. Cancer 2016, 115, 1078.   DOI