Browse > Article
http://dx.doi.org/10.5478/MSL.2016.7.1.21

Dual Nano-Electrospray and Mixing in the Taylor Cone  

Radionova, Anna (Department of Physics, The University of Auckland, Ion Innovation Laboratory)
Greenwood, David R. (School of Biological Sciences, The University of Auckland)
Willmott, Geoff R. (Department of Physics, The University of Auckland, Ion Innovation Laboratory)
Derrick, Peter J. (Department of Physics, The University of Auckland, Ion Innovation Laboratory)
Publication Information
Mass Spectrometry Letters / v.7, no.1, 2016 , pp. 21-25 More about this Journal
Abstract
Dual-channel nano-electrospray has recently become an ionization technique of great promise especially in biological mass spectrometry. This unique approach takes advantage of the mixing processes that occurs during electrospray. Understanding in more detail the fundamental principles influencing spray formation further study of the origins of the mixing processes: (1) in a Taylor cone region, (2) in charged droplets or (3) in both environments. The dual-channel emitters were made from borosilicate theta-shape glass tubes (O.D. 1.2 mm) and had a tip diameters of less than 4 μm. Electrical contact was achived by deposition of a thin film of an appropriate metal onto the surface of the emitter. The experimental investigation of the Taylor cone formation in a dual-channel electrospray emitter has been carried out by injection of polystyrene beads (diameter 3 μm) at very low concentrations into one of the channels of the non-tapered theta-glass tubes. High-speed camera experiments were set up to visualize the mixing processes in Taylor cone regions for dual-channel emitters. Mass spectra from dual nano-electrospray are presented.
Keywords
nano-electrospray; theta-shaped dual channel emitters; Taylor cone; mass spectrometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wilm, M. S.; Mann, M. Int. J. Mass Spectrom. Ion Proc. 1994, 136, 167.   DOI
2 Mortensen, D. N.; Williams, E. R. Anal. Chem.2015, 87, 1281.   DOI
3 Wilm, M. S.; Mann, M. Anal. Chem. 1996, 68, 1.   DOI
4 Mark, L.; Gill, M.; Mahut, M.; Derrick, P. J. Eur. J. Mass Spectrom. 2012, 18,439.   DOI
5 Fisher, C. M.; Kharlamova, A.; McLuckey, S. A. Anal. Chem. 2014, 86, 4581.   DOI
6 Mortensen, D. N.; Williams, E. R. Anal. Chem. 2014, 86, 9315.   DOI
7 Fisher, C. M.; Hilger, R.T.; Zhao, F.; McLuckey, S. A.J. Mass Spectrom. 2015, 50, 1063.   DOI
8 Radionova, A.; Greenwood, D.; Demarais, N. J.; Willmott, G. and Derrick, P. J. NZIP 2015 Conference, Hamilton (New Zealand), 6-8 July 2015, p 35.
9 Barrero, A.; Gañán-Calvo, A. M.; Dávila, J.; Palacio, A.; Gómez-González, E. Phys. Rev. 1998. E 58, 7309.
10 Palmblad, M.; Håkansson, K.; Håkansson, P.; Feng, X.; Cooper, H.; Giannakopulos, A.; Green, P.; Derrick, P. Eur. J. Mass Spectrom. 2000, 6, 267.   DOI
11 Linke-Winnebeck, C.; Paterson, N. G.; Young, P. G.; Middleditch, M. J.; Greenwood, D. R.; Witte, G.; Baker, E. N. J. Bio. Chem. 2014, 289, 177.   DOI