Browse > Article
http://dx.doi.org/10.5478/MSL.2015.6.4.112

Investigation of Ne and He Buffer Gases Cooled Ar+ Ion Clouds in a Paul Ion Trap  

Kiai, S.M. Sadat (Nuclear Science and Technology Research Institute (NSTR), Plasma Physics and Nuclear Fusion Research School, A.E.O.I.)
Elahi, M. (Nuclear Science and Technology Research Institute (NSTR), Plasma Physics and Nuclear Fusion Research School, A.E.O.I.)
Adlparvar, S. (Nuclear Science and Technology Research Institute (NSTR), Plasma Physics and Nuclear Fusion Research School, A.E.O.I.)
Nemati, N. (Nuclear Science and Technology Research Institute (NSTR), Plasma Physics and Nuclear Fusion Research School, A.E.O.I.)
Shafaei, S.R. (Nuclear Science and Technology Research Institute (NSTR), Plasma Physics and Nuclear Fusion Research School, A.E.O.I.)
Karimi, Leila (Department of Chemistry, University of Zanjan)
Publication Information
Mass Spectrometry Letters / v.6, no.4, 2015 , pp. 112-115 More about this Journal
Abstract
In this article, we examine the influences of Ne and He buffer gases under confined Ar+ ion cloud in a homemade Paul ion trap in various pressures and confinement times. The trap is of small size (r0 = 1 cm) operating in a radio frequency (rf) voltage only mode, and has limited accuracy of 13 V. The electron impact and ionization process take place inside the trap and a Faraday cup has been used for the detection. Although the experimental results show that the Ar+ ion FWHM with Ne buffer gas is wider than the He buffer gas at the same pressure (1×10-1 mbar) and confinement time is about 1000 μs, nevertheless, a faster cooling was found with He buffer gas with 500 μs. ultimetly, the obtanied results performed an average cloud tempertures reduced from 1777 K to 448.3 K for Ne (1000 μs) and from 1787.9 K to 469.4 K for He (500 μs)
Keywords
Paul ion trap; rf only mode; impact electron ionization technique; buffer gas cooling ions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 George Stafford, Jr. J. Am. Soc. Mass Spectrom. 2002, 13, 589.   DOI
2 Wei, X.; Qingyu, S.; Scott, A. S.; William, J. C.; Zheng, O. J. Am. Soc. Mass Spectrom. 2009, 20, 2144.   DOI
3 Sadat Kiai, S. M.; Andre, J.; Zerega, Y.; Brincourt, G.; Catela, R. Int. J. Mass Spectrom. Ion Process. 1991, 107, 191.   DOI
4 Enders, K.; Stachowska, E.; Marx, G.; Zölch, Ch.; Georg, U.; Dembczynski, J.; Werth, G. Phys. Rev. A 1997, 56, 265.   DOI
5 Lee, Y. Y.; Lee, W. W.; OH, C. H.; Kim, P. S. J. Korean Phys. Soc. 2001, 39, 902.
6 Sadat Kiai, S. M.; Seddighi Chaharborj, S.; Abu Bakar, M. R.; Fudziah, I. J. Anal. At. Spectrom. 2011, 26, 2247.   DOI
7 Wu, H. F.; Brodbelt, J. S. Int. J. Mass Spectrom. Ion Process. 1992, 115, 67.   DOI
8 Leuthner, H.; Werth, G. Appl. Phys. B 2014, 114, 89.   DOI
9 Bajpai, M.; Lachhvani, L.; Saxena, L. Phys. Status Solidi. 2009, 6, 2456.   DOI
10 Blaum, K.; Herfurth, F. Trapped Charged Particles and Fundamental Interactions, Springer: Berlin, 2008.
11 McLachlan, N. W. Theory and application of Mathieu functions, Oxford Press: London, 1951.