Browse > Article
http://dx.doi.org/10.5478/MSL.2012.3.2.54

Isotope Measurement of Uranium at Ultratrace Levels Using Multicollector Inductively Coupled Plasma Mass Spectrometry  

Oh, Seong-Y. (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Lee, Seon-A. (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Park, Jong-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Lee, Myung-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Song, Kyu-Seok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Publication Information
Mass Spectrometry Letters / v.3, no.2, 2012 , pp. 54-57 More about this Journal
Abstract
Mass spectrometric analysis was carried out using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for the precise and accurate determination of the isotope ratios of ultratrace levels of uranium dissolved in 3% $HNO_3$. We used the certified reference material (CRM) 112-A at a trace level of 100 pg/mL for the uranium isotopic measurement. Multiple collectors were utilized for the simultaneous measurement of uranium isotopes to reduce the signal uncertainty due to variations in the ion beam intensity over time. Mass bias correction was applied to the measured U isotopes to improve the precision and accuracy. Furthermore, elemental standard solution with certified values of platinum, iridium, gold, and thallium dissolved in 3% $HNO_3$ were analyzed to investigate the formation rates of the polyatomic ions of $Ir^{40}$ $Ar^+$, $Pt^{40}$ $Ar^+$, $Tl^{40}$ $Ar^+$, $Au^{40}$ $Ar^+$ for the concentration range of 50-400 pg/mL. Those polyatomic ions have mass-to-charge ratios in the 230-245 m/z region that it would contribute to the increase of background intensity of uranium, thorium, plutonium, and americium isotopes. The effect of the polyatomic ion interference on uranium isotope measurement has been estimated.
Keywords
ICP-MS; Multicollector; Isotope ratio; Uranium; Trace analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tayler, R. N.; Warneke, T.; Milton, J. A.; Croudace, I. W.; Warwick, P. E.; Nesbitt, R. W. J. Anal. At. Spectrom. 2003, 18, 480.   DOI   ScienceOn
2 Hoffmann, D. L. Int. J. Mass Spectrom. 2008, 275, 75.   DOI   ScienceOn
3 Pointurier, F.; Hemet, P.; Hubert, A. J. Anal. At. Spectrom. 2008, 23, 94   DOI   ScienceOn
4 Kim, C. S.; Kim, C. K.; Marin, P.; Sansone, U. J. Anal. At. Spectrom. 2007, 22, 827.   DOI   ScienceOn
5 Magara, M. et. al., J. Nucl. Sci. Technol. 2002, 39, 308.   DOI
6 Pointurier, F.; Baglan, N.; Hemet, P., Appl. Radiat. Isot. 2004, 60, 561.   DOI   ScienceOn
7 Albarede, F.; Telouk, P.; Blichert-Toft, J.; Agranier, A.; Nelson, B., Geochim. Cosmochim. Acta, 2004, 68, 2725.   DOI   ScienceOn
8 Ciceri, E.; Recchia, S.; Dossi, C.; Yang, L.; Sturgeon, R. E., Talanta 2008, 74, 642.   DOI   ScienceOn
9 New Brunswick Laboratory U.S. Department of Energy, http://www.nbl.doe.gov
10 Baglan, N.; Hemet, P.; Pointurier F.; Chiappini, R. J. Radioanal. Nucl. Chem. 2004, 261, 609.   DOI
11 Jakubowski, N.; Prohaska, T.; Rottmann, L.; Vanhaecke, F. J. Anal. At. Spectrom. 2011, 26, 693.   DOI   ScienceOn
12 Agarande M.; Benzoubir, S.; Bouisset, P.; Calmet, D. Appl. Radiat. Isot. 2001, 55, 161.   DOI   ScienceOn
13 Hoffmann, D. L.; Prytulak, J.; Richards, D. A.; Elliott, T.; Coath, C. D.; Smart, P. L.; Scholz, D. Int. J. Mass Spectrom. 2007, 264, 97.   DOI   ScienceOn
14 Zhang X. Z.; Esaka, F.; Esaka, K. T.; Magara, M.; Sakurai, S.; Usuda, S.; Watanabe, K. Spectrochim. Acta B 2007, 62, 1130.   DOI   ScienceOn
15 Agarande, M.; Benzoubir, S.; Nevia-Marques, A. M.; Bouisset, P. J. Environ. Radioact. 2004, 72, 169.   DOI   ScienceOn
16 Yang, L. Mass Spectrom. Rev. 2009, 28, 990.   DOI   ScienceOn