Browse > Article
http://dx.doi.org/10.5478/MSL.2011.2.1.024

Hyperthermal Collision-induced Dissociation of Bromotoluene Radical Cations at Self-Assembled Monolayer Surfaces  

Jo, Sung-Chan (LCD R&D Center, LCD Division, Samsung Electronics, Co., Ltd)
Augusti, Rodinei (Department of Chemistry, Federal University of Minas Gerais)
Cooks, R. Graham (Department of Chemistry, Purdue University)
Publication Information
Mass Spectrometry Letters / v.2, no.1, 2011 , pp. 24-27 More about this Journal
Abstract
Hyperthermal ion/surface collisions of bromotoluene radical cations were studied using perfluorinated (F-SAM) and hydroxyl-terminated (OH-SAM) self-assembled monolayer surfaces in a tandem mass spectrometer with BEEQ geometry. The isomers were differentiated by ion abundance ratios taken from surface-induced dissociation (SID). The dissociation rate followed the order of ortho > meta > para isomers. The peak abundance ratio of m/z 51 to m/z 65 showed the best result to discern the isomers. A dissociation channel leading to tolylium ion was suggested to be responsible for the pronounced isomeric differences. The capability of SID to provide high-energy activation with narrow internal energy distribution may have channeled the reaction into the specific dissociation pathway, also facilitating small differences in reaction rates to be effective in the spectral time window of this experiment. All of the molecular ions experiencing reactive collisions with the F-SAM surface undergo transhalogenation, in which a fluorine atom on the surface replaces the bromine in the incoming ions. This reactive collision was dependent on the laboratory collision energy occurring in ca. 40.75 eV range.
Keywords
Ion/surface Collisions; Surface-induced Dissociation (SID); Bromotoluene; Isomer; Self-assembled Monolayer (SAM); Hyperthermal Energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Horning, S. R.; Bier, M. E.; Cooks, R. G.; Brusini, G.;Traldi, P.; Guiotto, A.; Rodighiero, P. Biomed. Environ. Mass Spectrom. 1989, 18, 920.
2 McLafferty, F. W. Anal. Chem. 1962, 34, 16.   DOI
3 Yeo, N. H.; Williams, D. H. Chem. Commun. 1970, 886.
4 Proctor, C. J.; McLafferty, F. W. Org. Mass Spectrom. 1983,18, 193.   DOI
5 Dunbar, R. C.; Lifshitz, C. J. Chem. Phys. 1991, 94, 3542.   DOI
6 Bass, L. M.; Bowers, M. T. Org. Mass Spectrom. 1982,17, 229.   DOI
7 Kuck, D. Mass Spec. Reviews 1990, 9, 187.   DOI
8 Shin, S. K.; Han, S.-J.; Kim, B. Int. J. Mass Spectrom. Ion Processes 1996, 157/158, 345.   DOI   ScienceOn
9 Kim, B.; Shin, S. K. J. Chem. Phys. 1997, 106, 1411.   DOI   ScienceOn
10 Lifshitz, C.; Levin, I.; Kababia, S.; Dunbar, R. C. J. Phys. Chem. 1991, 95, 1667.   DOI
11 Dunbar, R. C.; Honovich, J. P.; Asamoto, B. J. Phys. Chem.1988, 92, 6935.   DOI
12 Lin, C. Y.; Dunbar, R. C. J. Phys. Chem. 1994, 98, 1369.   DOI   ScienceOn
13 Olesik, S.; Baer, T.; Morrow, J. C.; Ridal, J. J.; Buschek, J.;Holmes, J. L. Org. Mass Spectrom. 1989, 24, 1008.   DOI
14 Mabud, Md. A.; Ast, T.; Verma, S.; Jiang, Y. X.; Cooks,R. G. J. Am. Chem. Soc. 1987, 109, 7597.   DOI
15 Hayward, M. J.; Mabud, Md. A.; Cooks, R. G. J. Am. Chem. Soc. 1988, 110, 1343.
16 Mabud, Md.; Ast, T.; Cooks, R. G. Org. Mass Spectrom.1987, 22, 418.   DOI
17 Vincenti, M.; Horning, S. R.; Cooks, R. G. Org. Mass Spectrom. 1988, 23, 585.   DOI
18 Jo, S.-C.; Augusti, R.; Green, J.; Cooks, R. G. (Unpublished).
19 Shen, J. W.; Grill, V.; Evans, C.; Cooks, R. G. J. Mass Spectrom. 1999, 34, 354.   DOI   ScienceOn
20 Denault, J. W.; Evans, C.; Koch, K. J.; Cooks, R. G. Anal. Chem. 2000, 72, 5798.   DOI   ScienceOn