Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.306

An Investigation of Induction Motor Saturation under Voltage Fluctuation Conditions  

Ghaseminezhad, Morteza (Electrical Engineering Department, Shahed University)
Doroudi, Aref (Electrical Engineering Department, Shahed University)
Hosseinian, Seyed Hossein (Electrical Engineering Department, Amirkabir University of Technology (AUT))
Jalilian, Alireza (Electrical Engineering Department, Iran University of Science & Technology (IUST))
Publication Information
Abstract
Nowadays power quality effects on induction motors have gained significant attention due to wide application of these motors in industry. The impact of grid voltage fluctuations on the induction motor behavior is one of the important issues to be studied by power engineers. The degree of iron saturation is a paramount factor affecting induction motors performance. This paper investigates the effects of voltage fluctuations on motor magnetic saturation based on the harmonic content of airgap flux density by finite element method (FEM). It is clarified that the saturation harmonics under normal range of voltage fluctuations have not changed significantly with respect to pure sinusoidal conditions. Experimental results on a 1.1 kW, 380 V, 50 Hz, 2 pole induction motor are employed to validate the accuracy of the simulation results.
Keywords
induction motor; finite element method; voltage fluctuation; magnetic saturation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Baptista, J. Gonçalves, S. Soares, A. Valente, R. Morais, J. Bulas-Cruz, and M. J. Reis, Electrical Machines (ICEM), 2010 XIX International Conference on, IEEE (2010) pp 1-6.
2 P. Gnaciliski and M. Pepliliski, IET Electric. Power Appl. 8, 287 (2014).   DOI
3 M. Ghaseminezhad, A. Doroudi, S. H. Hosseinian, and A. Jalilian, IET Generation, Transmission & Distribution. 11, 512 (2017).   DOI
4 C. Lee, Trans. Am. Ins. Electr. Eng. 80, 597 (1961).
5 B. Chalmers and R. Dodgson, IEEE Trans. Power Appar. Syst. (1971) pp 564-569.
6 X. Tu, L.-A. Dessaint, R. Champagne, and K. Al-Haddad, IEEE Trans. Ind. Electron. 55, 2798 (2008).   DOI
7 J. P. G. de Abreu and A. Emanuel, 2001 IEEE Industrial and Commercial Power Systems Technical Conference. Conference Record (Cat. No. 01CH37226), IEEE (2001) pp 105-114.
8 R. Dugan, M. F. McGranaghan, and H. W. Beaty, Electric Power Systems Quality, McGraw-Hill (2002).
9 M. Amrhein and P. T. Krein, IEEE Trans. Energy Convers. 25, 339 (2010).   DOI
10 M. GhasemiNezhad, A. Doroudi, and S. H. Hosseinian, Amirkabir Int. J. Electr. Electron. Eng. 44, 53 (2012).
11 J. Cheaytani, A. Benabou, A. Tounzi, M. Dessoude, L. Chevallier, and T. Henneron, IEEE Trans. Magn. (2015) pp 1-4.
12 J.-J. Lee, Y.-K. Kim, H. Nam, K.-H. Ha, J.-P. Hong, and D.-H. Hwang, IEEE Trans. Magn. 40, 762 (2004).   DOI
13 S. Nandi, IEEE Trans. Ind. Appl. 40, 1058 (2004).   DOI
14 Y. Liao and T. A. Lipo, Electric Machines and Power Systems 22, 155 (1994).   DOI
15 G. Bottiglieri, A. Consoli, and T. A. Lipo, IEEE Trans. Energy Convers. 22, 819 (2007).   DOI
16 R. H. C. Palácios, I. N. da Silva, A. Goedtel, and W. F. Godoy, Electr. Power Syst. Res. 127, 249 (2015).   DOI
17 General guide on harmonics and interharmonics measurements for power supply systems and equipment connected thereto, IEC 61000-4-7.
18 J. Faiz and B. M. Ebrahimi, Prog. Electromagn. Res. 64, 239 (2006).   DOI
19 H. Moghadam Banayem, A. Doroudi, and M. Poormonfared Azimi, Electric Power Components and Systems 43, 412 (2015).   DOI
20 Kyung-Won Jeon, Yong-Jae Kim, and Sang-Yong Jung, J. Magn. 18, 212 (2013).   DOI
21 K. Komeza and M. Dems, IEEE Trans. Ind. Electron. 59, 2934 (2012).   DOI
22 S. Tennakoon, S. Perera, and D. Robinson, IEEE Trans. Power Delivery 23, 1207 (2008).   DOI
23 M. GhasemiNezhad, A. Doroudi, and S. Hosseinian, International Power System Conference (PSC), Teharn, Iran (2009).