Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.281

Effect of Wall Groove Characteristics on Yield Stress Measurement of Magnetorheological Fluid  

Tian, Zuzhi (School of Mechanics and Civil Engineering, China University of Mining and Technology)
Guo, Chuwen (School of Electrical and Power Engineering, China University of Mining and Technology)
Chen, Fei (School of Mechanical and Electrical Engineering, China University of Mining and Technology)
Wu, Xiangfan (School of Mechanical and Electrical Engineering, China University of Mining and Technology)
Publication Information
Abstract
To suppress the wall slip effect and improve the yield stress measurement precision of magnetorheological fluid, measurement disks with different grooves are first manufactured. Then, the influence of groove characteristics on the yield stress of magnetorheological fluid is investigated by the method of experiments. Finally, the optimization wall grooves of measurement disks are obtained, and the yield stress of a self-prepared magnetorheological fluid is measured. Results indicate that the groove type and groove width have a slight influence on the shear yield stress, whereas the measured yield stress increases with enhanced groove density, and the optimized groove depth is 0.3 mm. The measured shear yield stress of self-prepared MR fluid can be improved by 18 % according to the optimized grooved disks, and the maximum yield stress can reach up to 65 kPa as the magnetic flux density is 0.5 T.
Keywords
yield stress; groove characteristic; magnetorheological fluid; measurement;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. R Agustin, F. Donado, and R. E. Rubio, J. Magn. Magn. Mater. 335, 149 (2013).   DOI
2 Y. H. Huang, Y. H. Jiang, X. B. Yang, and R. Z. Xu, J. Magn. 20, 317 (2015).   DOI
3 H. J. Kim, G. C. Kim, G. S. Lee, T. M. Hong, and H. J. Choi, J. Nanosci. Nanotechnol. 13, 6005 (2013).   DOI
4 Y. D. Liu, J. Lee, S. B. Choi, and H. J. Choi, Smart Mater. Struct. 22, 065006 (2013).   DOI
5 O. Erol, B. Gonenc, D. Senkal, S. Alkan, and H. Gurocak, J. Intell. Mater. Syst. Struct. 23, 427 (2012).   DOI
6 X. F. Wu, X. M. Xiao, Z. Z. Tian, F. Chen, and J. Wang, J. Magn. 21, 244 (2016).   DOI
7 A. K. Singh, S. Jha, and P. M. Pandey, Mater. Manuf. Processes 27, 389 (2012).   DOI
8 F. Chen, Z. Z. Tian, and X. F. Wu, Mater. Manuf. Processes 30, 210 (2015).   DOI
9 K. Wollny, J. Lauger, and S. Huck, Appl. Rheol. 1, 25 (2002).
10 S. Genc and P. P. Phule, Smart Mater. Struct. 11, 140 (2002).   DOI
11 X. Wang, Rheol. Acta 45, 899 (2006).   DOI
12 J. H. Park, B. D. Chin, and O. O. Park, J. Colloid Interface Sci. 240, 349 (2001).   DOI
13 E. Lemaire and G. Bossis, J. Phys. D: Appl. Phys. 24, 1473 (1991).   DOI
14 G. Bossis and E. Lemaire, J. Rheol. 35, 1345 (1991).   DOI
15 S. Gorodkin and N. Zhuravski, Int. J. Mod. Phys. B 16, 2745 (2002).   DOI
16 M. L. Hans, G. Claus, and K. Christoffer, Rheol. Acta 50, 141 (2011).   DOI