Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.1.029

Magnetic-vortex Dynamic Quasi-crystal Formation in Soft Magnetic Nano-disks  

Kim, Junhoe (National Creative Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University)
Kim, Sang-Koog (National Creative Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University)
Publication Information
Abstract
We report a micromagnetic numerical study on different quasi-crystal formations of magnetic vortices in a rich variety of dynamic transient states in soft magnetic nano-disks. Only the application of spin-polarized dc currents to a single magnetic vortex leads to the formation of topological-soliton quasi-crystals composed of different configurations of skyrmions with positive and negative half-integer numbers (magnetic vortices and antivortices). Such topological object formations in soft magnets, not only in the absence of Dzyaloshinskii-Moriya interaction but also without magnetocrystalline anisotropy, are discussed in terms of two different topological charges, the winding number and the skyrmion number. This work offers an insight into the dynamic topological-spin-texture quasi-crystal formations in soft magnets.
Keywords
topological soliton; half-integer skyrmion; vortex and antivortex; dynamic quasi-crystal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Malozemoff and J. Slonzewski, Magnetic Domain Walls in Bubble Materials, Academic, New York (1979).
2 A. Hubert and R. Schafer, Magnetic Domains: The Analysis of Magnetic Microstructure, Springer, Berlin (1998).
3 T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).   DOI
4 A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002).   DOI
5 K. Shigeto, T. Okuno, K. Mibu, T. Shinjo, and T. Ono, Appl. Phys. Lett. 80, 4190 (2002).   DOI
6 K.-S. Lee, B.-W. Kang, Y.-S. Yu, and S.-K. Kim, Appl. Phys. Lett. 85, 1568 (2004).   DOI
7 K.-S. Lee, S. Choi, and S.-K. Kim, Appl. Phys. Lett. 87, 192502 (2005).   DOI
8 B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Nature 444, 461 (2006).   DOI
9 R. Hertel and C. Schneider, Phys. Rev. Lett. 97, 177202 (2006).   DOI
10 K. Y. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002).   DOI
11 M. Buess, R. Hollinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M. R. Scheinfein, D. Weiss, and C. H. Back, Phys. Rev. Lett. 93, 077207 (2004).   DOI
12 H. Wang and C. E. Campbell, Phys. Rev. B 76, 220407(R) (2007).   DOI
13 R. P. Cowburn, Nature Mater. 6, 255 (2007).   DOI
14 J. Thomas, Nature Nanotechnol. 2, 206 (2007).   DOI
15 M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schuetz, Nature Commun. 2, 279 (2011).   DOI
16 R. Wang and X. Dong, Appl. Phys. Lett. 100, 082402 (2012).   DOI
17 M.-W. Yoo, J. Lee, and S.-K. Kim, Appl. Phys. Lett. 100, 172413 (2012).   DOI
18 S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008).   DOI
19 S. Bohlens, B. Kruger, A. Drews, M. Bolte, G. Meier, and D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (2008).   DOI
20 S. Barman, A. Barman, and Y. Otani, IEEE Trans. Magn. 46, 1342 (2010).   DOI
21 H. Jung, Y.-S. Choi, K.-S. Lee, D.-S. Han, Y.-S. Yu, M.Y. Im, P. Fischer, and S.-K. Kim, ACS Nano 6, 3712 (2012).   DOI
22 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010).   DOI
23 K.-S. Lee, M.-W. Yoo, Y.-S. Choi, and S.-K. Kim, Phys. Rev. Lett. 106, 147201 (2011).   DOI
24 D.-S. Han, A. Vogel, H. Jung, K.-S. Lee, M. Weigand, H. Stoll, G. Schutz, P. Fischer, G. Meier, and S.-K. Kim, Sci. Rep. 3, 2262 (2013).   DOI
25 T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).   DOI
26 A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
27 S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009).   DOI
28 S. Heinze, K. V. Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendager, G. Bihlmayer, and S. Blugel, Nature Physics 7, 713 (2011).   DOI
29 A. Fert, V. Cros, and J. Sampaio, Nature Nanotech. 8, 152 (2013).   DOI
30 I. E. Dzyaloshinskii, J. Phys. Chem. Sol. 4, 241 (1958).   DOI
31 T. Moriya, Phys. Rev. 120, 91 (1960).   DOI
32 E. E. Huber Jr., D. O. Smith, and J. B. Goodenough, J. Appl. Phys. 29, 294 (1958).   DOI
33 X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nature Commun. 3, 988 (2012).   DOI
34 J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature Nanotech. 8, 742 (2013).   DOI
35 O. Tretiakov and O. Tchernyshyov, Phys. Rev. B 75, 012408 (2007).   DOI
36 The version of the OOMMF code used is 1.2a4. See http://math.nist.gov/oommf.
37 L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
38 Y.-S. Choi, M.-W. Yoo, K.-S. Lee, Y.-S. Yu, H. Jung, and S.-K. Kim, Appl. Phys. Lett. 96, 072507 (2010).   DOI
39 T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
40 J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).   DOI
41 J.-G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, Phys. Rev. Lett. 98, 056604 (2007).   DOI
42 D. D. Sheka, Y. Gaididei, and F. G. Mertens, Appl. Phys. Lett. 91, 082509 (2007).   DOI
43 Y. Liu, H. He, and Z. Zhang, Appl. Phys. Lett. 91, 242501 (2007).   DOI
44 O. M. Volkov, V. P. Kravchuk, D. D. Sheka, and Y. Gaididei, Phys. Rev. Lett. 84, 052404 (2011).
45 Y. Gaididei, O. M. Volkov, V. P. Kravchuk, and D. D. Sheka, Phys. Rev. B 86, 144401 (2012).   DOI
46 B. Binz, A. Vishwanath, Physica B 403, 1336 (2008).   DOI