Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.235

Synthesis, Structure and Magnetization Behaviors of MnBi/Fe3B/Nd2Fe14B Nanocomposite alloy  

Yang, Y. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
Wu, Q. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
Hu, Y.C. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
Zhang, P.Y. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
Ge, H.L. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
Publication Information
Abstract
Microstructure and magnetization behaviors of $MnBi/Fe_3B/Nd2_Fe_{14}B$ nanocomposite alloy have been investigated. It was found that the coercivity increased firstly and then decreased, and saturation magnetization decreased with the additon of MnBi alloy. The addition of 40 wt.% MnBi powder enhanced the coercivity from 192.8 kA/m to 311.2 kA/m. The ${\delta}M$ and D(H)-H plots suggested the occurrence of a stronger exchange-coupling occurring between the hard and soft magnetic phase for this sample. The dependence of coercivity with temperature was discussed in 40 wt.% $Mn_{55}Bi_{45}$/ 60 wt.% $Nd_{4.5}Fe_{76.5}Nb_{0.5}B_{18.5}$ alloy powder, and a positive temperature coefficient was founded from 298 K to 350 K.
Keywords
nanocomposite alloy; coercivity; exchange coupling interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Coehoorn, D. B. de Mooij, J. P. W. B. Duchateau, and K. H. J. Buschow, J. de Phys. 49, 669 (1988).
2 S. Hirosawa, Y. Shigemoto, T. Miyoshi, D. Shindo, Y. Park, Y. Gao, and H. Kanekiyo, Scripta. Mater. 48, 839 (2003).   DOI
3 S. Cao, M. Yue, and Y. X. Yang, J. Appl. Phys. 109, 07A740 (2011).   DOI
4 J. B. Yang, Y. B. Yang, and X. G. Chen, Appl. Phys. Lett. 99, 082505 (2011).   DOI
5 Y. B. Yang, X. G. Chen, S. Guo, A. R. Yanb, Q. Z. Huangc, M. M. Wud, D. F. Chend, Y. C. Yanga, and J. B. Yanga, J. Magn. Magn. Mater. 330, 106, (2013).   DOI
6 J. Cui, J. P. Choi, G. Li, E. Polikarpov, and J. Darsell, J. Appl. Phys. 115, 17A743 (2014).   DOI
7 M. Sagawa, S. Fujimori, and M. Togawa, J. Appl. Phys. 55, 2083 (1984).   DOI
8 E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).
9 H. W. Zhang, C. B. Rong, X. B. Du, J. Zhang, S. Y. Zhang, and B. G. Shen, Appl. Phys. Lett. 82, 4098 (2003).   DOI
10 P. E. Kelly, K. O. Grady, and P. I. Mayo, IEEE Trans. Magn. 25, 3881 (1989).   DOI
11 M. X. Pan, P. Y. Zhang, H. L. Ge, N. J. Yu, and W. Qiong, J. Magn. Magn. Mater. 361, 219 (2014).   DOI
12 J. Zhang, Y. K. Takahashi, R. Gopalan, and K. Hono, Appl. Phys. Lett. 86, 122509 (2005).   DOI
13 D. Goll, M. Seeger, H. Kronmuller, and J. Bauer, J. Magn. Magn. Mater. 185, 49 (1998).   DOI