Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.1.125

Buffer-Optimized High Gradient Magnetic Separation: Target Cell Capture Efficiency is Predicted by Linear Bead-Capture Theory  

Waseem, Shahid (Department of Pathobiology, Faculty of Science, Mahidol University)
Udomsangpetch, Rachanee (Department of Pathobiology, Faculty of Science, Mahidol University)
Bhakdi, Sebastian C. (Department of Pathobiology, Faculty of Science, Mahidol University)
Publication Information
Abstract
High gradient magnetic separation (HGMS) is the most commonly used magnetic cell separation technique in biomedical science. However, parameters determining target cell capture efficiencies in HGMS are still not well understood. This limitation leads to loss of information and resources. The present study develops a bead-capture theory to predict capture efficiencies in HGMS. The theory is tested with CD3- and CD14-positive cells in combination with paramagnetic beads of different sizes and a generic immunomagnetic separation system. Data depict a linear relationship between normalized capture efficiency and the bead concentration. In addition, it is shown that key biological functions of target cells are not affected for all bead sizes and concentrations used. In summary, linear bead-capture theory predicts capture efficiency ($E_t$) in a highly significant manner.
Keywords
high gradient magnetic separation; capture efficiency; recovery rate; CD3-positive cells; CD14-positive cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Oberteuffer, IEEE Trans. Magn. 9, 303 (1973).   DOI
2 F. Paul, S. Roath, and D. Melville, Br. J. Haematol. 38, 273 (1978).   DOI
3 F. Paul, S. Roath, D. Melville, D. Warhurst, and J. Osisanya, The Lancet 318, 70 (1981).   DOI
4 S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, Cytometry 11, 231 (1990).   DOI
5 A. Grutzkau and A. Radbruch, Cytometry Part A 77, 643 (2010).
6 D. Pappas, Front Matter: Wiley Online Library (2010).
7 S. Bhakdi, A. Ottinger, S. Somsri, P. Sratongno, P. Pannadaporn, P. Chimma, P. Malasit, K. Pattanapanyasat, and H. P. N. Neumann, Malaria J. 9, 38 (2010).   DOI
8 T. Baier, S. Mohanty, K. Drese, F. Rampf, J. Kim, F. Schonfeld, Microfluid Nanofluid 7, 205 (2009).   DOI
9 R. Gerber and P. Lawson, IEEE Trans. Magn. 25, 806 (1989).   DOI
10 S. Y. Wang, K. L. Mak, L. Y. Chen, M. P. Chou, and C. K. Ho, Immunology 77, 298 (1992).
11 W. Trager and J. B. Jensen, Science 193, 673 (1976).   DOI
12 C. Lambros and J. Vanderberg, J. Parasitol. 65, 418 (1979).   DOI
13 M. R. Potter and M. Moore, Clin. Exp. Immunol. 21, 456 (1975).
14 A. Scholzen, D. Mittag, S. J. Rogerson, B. M. Cooke, and M. Plebanski, PLoS Pathog. 5, 14 (2009).
15 S. Yilmaz, F. Unal, and D. Yuzbasioglu, Cytotech. 30, 30 (2009).
16 L. Ginaldi, E. Matutes, N. Farahat, M. De Martinis, R. Morilla, and D. Morilla, Br. J. Haematol. 93, 921 (1996).   DOI
17 H. W. Ziegler-Heitbrock, M. Strobel, D. Kieper, G. Fingerle, T. Schlunck, I. Petersmann, J. Ellwart, M. Blumenstein, and J. G. Haas, Blood. 79, 503 (1992).
18 B. Passlick, D. Flieger, and H. W. Ziegler-Heitbrock, Blood 74, 2527 (1989).
19 W. Leung and C. Civin, Clinical bone marrow and blood stem cell transplantation Cambridge University Press, Cambridge (2000).
20 P. Lang, M. Schumm, G. Taylor, T. Klingebiel, S. Neu, A. Geiselhart, S. Kuci, D. Niethammer, and R. Handgretinger, Bone Marrow Trans. 24, 583 (1999).   DOI
21 T. Lea, E. Smeland, S. Funderud, F. Vartdal, C. Davies, K. Beiske, and J. Ugelstad, Scand. J. Immunol. 23, 09 (1986).
22 A. Winkelstein, P. L. Simon, P. A. Myers, and L. D. Weaver, Exp. Hematol. 14, 1023 (1986).
23 E. Bettiol, D. L. Van de Hoef, D. Carapau, and A. Rodriguez, Parasite Immunol. 32, 389 (2010).   DOI
24 P. M. Henson, J. Exp. Med. 134, 114 (1971).
25 R. Takemura, P. E. Stenberg, D. F. Bainton, and Z. Werb, J. Cell Biol. 102, 55 (1986).   DOI
26 A. Oren, C. Husebo, A.-C. Iversen, and R. Austgulen, J. Immunol. Meth. 303, 1 (2005).   DOI